
FISEVIER

Contents lists available at SciVerse ScienceDirect

Commun Nonlinear Sci Numer Simulat

Group classification of ODE y''' = F(x, y, y')

A.A. Gainetdinova a,*, N.H. Ibragimov a,b, S.V. Meleshko c

- ^a Laboratory "Group Analysis of Mathematical Models in Natural and Engineering Sciences", Ufa State Aviation Technical University, 450 000 Ufa, Russia
- ^b Research Centre ALGA: Advances in Lie Group Analysis, Department of Mathematics and Science, Blekinge Institute of Technology, SE-371 79 Karlskrona, Sweden
- ^c School of Mathematics, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand

ARTICLE INFO

ABSTRACT

Article history:

Available online 14 June 2013

Keywords: Ordinary differential equations Group classification Lie symmetries In his extensive work of 1884 on the group classification of ordinary differential equations Lie performed, inter alia, the group classification of the particular type of the second-order equations y'' = F(x, y). In the present paper we extend Lie's classification to the third-order equations y''' = F(x, y, y').

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Recall that Lie solved the problem of group classification of the second-order ordinary differential equations (see, e.g. [1])

$$\mathbf{y}'' = f(\mathbf{x}, \mathbf{y}, \mathbf{y}') \tag{1.1}$$

and showed that the Eqs. (1.1) can admit symmetry Lie algebras L_r whose dimensions assume precisely the values 1, 2, 3, and 8. Note that an arbitrary invertible change of variables

$$\bar{x} = \phi(x, y), \quad \bar{y} = \psi(x, y), \quad \phi_x \psi_y - \phi_y \psi_x \neq 0,$$

$$(1.2)$$

maps any Eq. (1.1) into an equation of the same form. In other words, Eq. (1.2) provides the general group of point wise equivalence transformations of Eq. (1.1) with arbitrary f(x,y,y'). Lie's group classification is made up to equivalence transformations (1.2). The classification result is given in Table 1.

In 1884 Lie performed the group classification (see [2], §2, pp. 440–446) of the particular type of Eqs. (1.1), namely of the equations

$$\mathbf{y}'' = F(\mathbf{x}, \mathbf{y}). \tag{1.3}$$

Lie demonstrated by simple calculations that the general group of point wise equivalence transformations of Eq. (1.3) is given by the transformations

$$\bar{\mathbf{x}} = \phi(\mathbf{x}), \quad \bar{\mathbf{y}} = A\sqrt{\phi'(\mathbf{x})}\mathbf{y} + \beta(\mathbf{x}),$$
 (1.4)

where $A \neq 0$ is any constant, $\beta(x)$ is an arbitrary function, and $\phi(x)$ is an arbitrary function such that $\phi'(x) \neq 0$. Lie's group classification of Eqs. (1.3) up to equivalence transformations (1.4) is summarized in Table 2.

The calculations show (see [3], Sections 2.1 and 2.2) that the transformation (1.4) maps Eq. (1.3) into the equation

$$\bar{\mathbf{y}}'' = \overline{F}(\bar{\mathbf{x}}, \bar{\mathbf{y}})$$

E-mail addresses: aliya-oct@yandex.ru (A.A. Gainetdinova), nailhib@gmail.com (N.H. Ibragimov), sergey@math.sut.ac.th (S.V. Meleshko).

^{*} Corresponding author.

Table 1 Lie's group classification of equations y'' = f(x, y, y').

L_r	Basis of L _r	Equation
L_1	$X_1 = \frac{\partial}{\partial x}$	$\mathbf{y}'' = f(\mathbf{y}, \mathbf{y}')$
L_2	$X_1 = \frac{\partial}{\partial x}, X_2 = \frac{\partial}{\partial y}$	$\mathbf{y}'' = f(\mathbf{y}')$
	$X_1 = \frac{\partial}{\partial y}, X_2 = x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y}$	$y'' = \frac{1}{x}f(y')$
L_3	$X_1 = \frac{\partial}{\partial x} + \frac{\partial}{\partial y}, X_2 = x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y}, X_3 = x^2 \frac{\partial}{\partial x} + y^2 \frac{\partial}{\partial y}$	$y'' = 2 \frac{y' + Cy'^{3/2} + y'^2}{y - x}$
	$X_1 = \frac{\partial}{\partial x}, X_2 = 2x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y}, X_3 = x^2 \frac{\partial}{\partial x} + xy \frac{\partial}{\partial y}$	$y'' = Cy^{-3}$
	$X_1 = \frac{\partial}{\partial x}, X_2 = \frac{\partial}{\partial y}, X_3 = x \frac{\partial}{\partial x} + (x + y) \frac{\partial}{\partial y}$	$y'' = Ce^{-y'}$
	$X_1 = \frac{\partial}{\partial x}, X_2 = \frac{\partial}{\partial y}, X_3 = x \frac{\partial}{\partial x} + ky \frac{\partial}{\partial y}$	$y'' = Cy'^{rac{k-2}{k-1}}$, $k eq 0, rac{1}{2}, 1, 2$
L_8	$X_1 = \frac{\partial}{\partial x}, X_2 = \frac{\partial}{\partial y}, X_3 = x \frac{\partial}{\partial y}, X_4 = x \frac{\partial}{\partial x}, X_5 = y \frac{\partial}{\partial x}, \\ X_6 = y \frac{\partial}{\partial y}, X_7 = x^2 \frac{\partial}{\partial x} + xy \frac{\partial}{\partial y}, X_8 = xy \frac{\partial}{\partial x} + y^2 \frac{\partial}{\partial y}, X_{10} = x \frac{\partial}{\partial x}, \\ X_{10} = x \frac{\partial}{\partial x}, X_{10} = x \frac{\partial}{\partial x}, X_{10} = x \frac{\partial}{\partial x}, X_{10} = x \frac{\partial}{\partial x}, \\ X_{10} = x \frac{\partial}{\partial x}, X_{10} = x \frac{\partial}{\partial x}, X_{10} = x \frac{\partial}{\partial x}, \\ X_{10} = x \frac{\partial}{\partial x}, X_{10} = x \frac{\partial}{\partial x}, X_{10} = x \frac{\partial}{\partial x}, \\ X_{10} = x \frac{\partial}{\partial x}, X_{10} = x \frac{\partial}{\partial x}, \\ X_{10} = x \frac{\partial}{\partial x}, X_{10} = x \frac{\partial}{\partial x}, \\ X_{10} = x \frac{\partial}{\partial x}, X_{10} = x \frac{\partial}{\partial x}, \\ X_{10} = x \frac{\partial}{\partial x}, X_{10} = x \frac{\partial}{\partial x}, \\ X_{10} = x \frac{\partial}{\partial x}, X_{10} = x \frac{\partial}{\partial x}, \\ X_{10} = x \frac{\partial}{\partial x}, $	y''=0

Table 2 Lie's group classification of equations y'' = F(x, y).

L _r	Basis of L_r	Equation
L_1	$X_1 = \frac{\partial}{\partial x}$	y'' = F(y)
	$X_1 = \frac{\partial}{\partial x} + y \frac{\partial}{\partial y}$	$y'' = y\Omega(ye^{-x})$
L_2	$X_1 = \frac{\partial}{\partial x}, X_2 = x \frac{\partial}{\partial x} - 2 \frac{\partial}{\partial y}$	$y'' = e^y$
	$X_1 = \frac{\partial}{\partial x}, X_2 = (m-1)x\frac{\partial}{\partial x} - 2y\frac{\partial}{\partial y}$	$y''=y^m$
L_3	See Table 1	$y'' = Cy^{-3}$
L_8	See Table 1	y'' = 0

with

$$\overline{F} = \frac{A}{(\phi')^{3/2}} F + A \left[\frac{\phi'''}{2(\phi')^{5/2}} - \frac{3(\phi'')^2}{4(\phi')^{7/2}} \right] y + \frac{\beta''}{(\phi')^2} - \frac{\beta'\phi''}{(\phi')^3}$$
(1.5)

and that the Lie algebra of the equivalence transformations 1.4,1.5 is spanned by the operators

$$Y_0 = y \frac{\partial}{\partial y} + F \frac{\partial}{\partial F}, \quad Y_\beta = \beta(x) \frac{\partial}{\partial y} + \beta''(x) \frac{\partial}{\partial F},$$

$$Y_{\xi} = \xi(x)\frac{\partial}{\partial x} + \frac{y}{2}\xi'(x)\frac{\partial}{\partial y} + \left[\frac{y}{2}\xi'''(x) - \frac{3}{2}\xi'(x)F\right]\frac{\partial}{\partial F}. \tag{1.6}$$

Remark 1. The group classification of the equations y'' = F(x, y) has been repeated later in [4], where the following equation and its symmetry \overline{X} :

$$\bar{y}'' = \frac{1}{\bar{x}^2} g(\bar{y}), \quad \bar{X} = \bar{x} \frac{\partial}{\partial \bar{x}}$$
 (1.7)

have appeared instead of Lie's equation and its symmetry *X* (see Table 2):

$$y'' = y\Omega(ye^{-x}), \quad X = \frac{\partial}{\partial x} + y\frac{\partial}{\partial y}.$$
 (1.8)

However, these two equations belong to one and the same equivalence class, namely they are connected by the following equivalence transformation (1.4):

$$\bar{x} = e^{-2x}, \quad \bar{y} = e^{-x}y.$$
 (1.9)

The transformation (1.9) can be easily found from the requirement that the transformation (1.4) maps the operator X from Eq. (1.8) into the operator that is proportional to the operator \overline{X} from Eq. (1.7), namely

$$X(\phi(x))\frac{\partial}{\partial \overline{x}} + X\left(A\sqrt{\phi'(x)}y + \beta(x)\right)\frac{\partial}{\partial \overline{y}} = \lambda \overline{X} \equiv \lambda \phi(x)\frac{\partial}{\partial \overline{x}}.$$

Indeed, equating the coefficients of $\partial/\partial \bar{x}$ in both sides of the above equation one obtains

$$\frac{d\phi}{dx} = \lambda\phi,$$

Download English Version:

https://daneshyari.com/en/article/766738

Download Persian Version:

https://daneshyari.com/article/766738

Daneshyari.com