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a b s t r a c t

In Ibragimov (2007) [13] a general theorem on conservation laws was proved. In Gandarias
(2011) and Ibragimov (2011) [7,15] the concepts of self-adjoint and quasi self-adjoint
equations were generalized and the definitions of weak self-adjoint equations and nonlin-
early self-adjoint equations were introduced. In this paper, we find the subclasses of
nonlinearly self-adjoint porous medium equations. By using the property of nonlinear
self-adjointness, we construct some conservation laws associated with classical and non-
classical generators of the differential equation.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

For decades, researchers have been interested in the description of evolution processes where diffusion is combined with
other effects, notably reaction, absorption and convection. While more often that not the spatial-dependent factors are be-
lieved to be constant, there is no fundamental reason to believe so. In fact, allowing their spatial dependence enables one to
incorporate additional factors into the study which may play an important role. For instance, in a porous medium this may
account for intrinsic factors, like medium contamination with another material. Also, in plasma, this may express the impact
that solid impurities arising from the walls have on the enhancement of the radiation channel. The model equation to be
considered here is the one-dimensional evolution equation involving diffusion and convection

ut ¼ ðunÞxx þ f ðxÞusux: ð1:1Þ

In some previous works [6,9], we study Eq. (1.1) from the point of view of the theory of symmetry reductions in partial dif-
ferential equations. We obtain the classical and nonclassical symmetries admitted by (1.1), we list the different choices for
functions f ðxÞ and constants n and s, for which Eq. (1.1) admits classical and nonclassical reductions. Then, we use the trans-
formations groups to reduce the equations to ordinary differential equations.

In [1,2] Anco and Bluman gave a treatment of a direct conservation law method for partial differential equations ex-
pressed in a standard Cauchy–Kovaleskaya form. The nontrivial conservation laws are characterized by a multiplier k with
no dependence on ut . In [19] Kara and Mahomed showed how to construct conservation laws of Euler–Lagrange type equa-
tions via Noether type symmetry operators associated with partial Lagrangians.

In [13], (see also [12]) a general theorem was proved in order to get conservation laws for arbitrary differential equations.
This theorem allows us to find for any differential equation with known Lie, Lie-Bäcklund or nonlocal symmetries, the asso-
ciated conservation laws independently of the existence of classical Lagrangians. Many equations having remarkable sym-
metry properties and physical significance are not self-adjoint. The notion of self-adjoint equations has been extended and
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the concepts of quasi self-adjoint equations, weak self-adjoint and nonlinearly self-adjoint equations, have been introduced
in [14,7,15]. Recently, many works have been done in this direction to get conservation laws associated to classical symme-
tries for some nonlinear differential equations [5,3,4,17,18].

In some previous papers [7,8], we have determined the subclasses of weak self-adjoint porous medium equations and we
have constructed some conservation laws associated with classical symmetries of weak self-adjoint differential equations.

The aim of this paper is to determine, for Eq. (1.1), the subclasses of equations which are nonlinearly self-adjoint. We will
also determine, by using the notation and techniques of [13], some non-trivial conservation laws for Eq. (1.1) associated to
classical and nonclassical generators. As far as we know, it is the first time in which the general theorem on conservation
laws proved in [13] has been used to find conservation laws associated to nonclassical generators.

2. Weak and nonlinearly self-adjoint equations

Definition 1. Consider a sth-order partial differential equation

Fðx;u;uð1Þ; . . . ;uðsÞÞ ¼ 0; ð2:1Þ

with independent variables x ¼ ðx1; . . . ; xnÞ and a dependent variable u, where uð1Þ ¼ fuig;uð2Þ ¼ fuijg; . . . denote the sets of
the partial derivatives of the first, second, etc. orders, ui ¼ @u=@xi, uij ¼ @2u=@xi@xj.

The adjoint equation to (2.1) is

F�ðx;u; v;uð1Þ;v ð1Þ; . . . ; uðsÞ; v ðsÞÞ ¼ 0; ð2:2Þ

with

F�ðx;u; v;uð1Þ;v ð1Þ; . . . ; uðsÞ; v ðsÞÞ ¼
dðvFÞ

du
; ð2:3Þ

where

d
du
¼ @

@u
þ
X1
s¼1

ð�1ÞsDi1 � � �Dis
@

@ui1 ���is
; ð2:4Þ

denotes the variational derivative (the Euler–Lagrange operator), and v is a new dependent variable.
Here

Di ¼
@

@xi
þ ui

@

@u
þ uij

@

@uj
þ � � �

are the total differentiations.

Definition 2. Eq. (2.1) is said to be weak self-adjoint if the equation obtained from the adjoint equation (2.2) by the substi-
tution v ¼ hðx; uÞ, with a certain function hðx;uÞ such that hx – 0 and hu – 0 is identical to the original equation.

Definition 3. Eq. (2.1) is said to be nonlinearly self-adjoint if the equation obtained from the adjoint equation (2.2) by the
substitution v ¼ hðx;uÞ, with a certain function hðx;uÞ such that hðx;uÞ – 0 is identical to the original equation.

We remark that it is possible to find substitutions v ¼ hðx; t;u;ux; . . .Þ depending on the derivatives, see [16,10] for further
discussions and examples.

Following [12], applying the Euler–Lagrange operator to the formal Lagrangian L ¼ vF we obtain that the adjoint equation
to (1.1) reads:

F� ¼ d
du ½vðut � ðunÞxx � f ðxÞusuxÞ� ¼ �nun�1vxx þ fusvx � v t þ fxusv ð2:5Þ

Now we look for a substitution v ¼ hðx;uÞ such that Eq. (1.1) becomes nonlinearly self-adjoint. For this purpose we substi-
tute v ¼ hðx;uÞ into (2.5)

F� ¼ �un�2ðhunuÞuxx � un�3ðhuunu2ÞðuxÞ2 þ ðfhuus � 2huxnun�1Þux � huut þ ðfhx þ fxhÞus � hxxnun�1:

Now we assume that

F�jv¼hðx;uÞ ¼ k½ut � ðunÞxx � f ðxÞusux� ð2:6Þ

where k is an undetermined coefficient. Condition (2.6) reads

uxðfuskþ fhuus � 2huxnun�1Þ þ un�3ðuxÞ2ðn2uk� nuk� huunu2Þ þ un�2uxxðnuk� hunuÞ � utðkþ huÞ
þ ðfhx þ fxhÞus � hxxnun�1 ¼ 0: ð2:7Þ
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