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A B S T R A C T

Excitation-Emission fluorescence spectroscopy is a versatile technique and has been used to detect, charac-
terize and quantify residual Dissolved Organic Matter (DOM) in aquatic domains. PARAllel FACtor Analysis
(PARAFAC) has been extensively used in the analysis of excitation-emission matrices (EEM), allowing for a
better identification and quantification of contributions resulting from spectral decomposition.
In this work we have adapted Independent Component Analysis (ICA) in order to make it suitable to the
analysis of three-way EEM datasets, and tested ICA and PARAFAC performances for the study of three avail-
able datasets (Claus, Dorrit and drEEM). Semi-empirical simulation allowed us to assess the impact of (a)
sample size, (b) signal sources and (c) composition dependencies, and the presence of (d) unspecific signal
contributions (e.g. light scattering) upon both algorithms.
PARAFAC and ICA have similar performances in processing ideal three-way EEM datasets but, in the presence
of non-trilinear responses, ICA leads to a more realistic approach, yielding a better decomposition of con-
tributing sources and their identification and quantification. This makes this algorithm more suitable for the
analysis of real, raw EEM data, without the need of preprocessing to remove any unspecific contributions.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Fluorescence is a very powerful technique, able to detect a large
range of residual organic material dissolved in water [1]. This has the
major vantages of low analytical costs, very rapid analysis, very high
sensitivity and large linear analytical range, which makes it very con-
venient for the characterization of residual organic matter dissolved
in aquatic environments [2].

This technique is versatile, since it allows the study and char-
acterization of samples using different types of spectra such as
excitation, where fluorescence is measured at a fixed wavelength
while excitation range is scanned, emission, where a given excitation
wavelength is used and the respective system emission measured,
synchronous fluorescence, with simultaneous scan of excitation and
emission wavelengths keeping the wavelength difference constant.
In this work, sample information details are enhanced by recording
Excitation-Emission matrices (EEM) to produce a fluorescence sur-
face. The decomposition of these EEM datasets allows to characterize
and quantify dissolved organic matter (DOM) present in environ-
mental samples and other matrices [2,3]. Advances in electronics and
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signal processing abilities are leading to standard use of, other tech-
niques, such as time-resolved fluorescence [1], which can also use
the two numerical techniques focused here.

1.1. EEM Analysis

1.1.1. PARAFAC
PARAllel FACtor Analysis (PARAFAC) is a very powerful multivari-

ate data analysis method suited for the decomposition of 3-way and
4-way multivariate systems into lower dimensional matrices [4,5].
Because of its ability to directly extract information with chemical
meaning [5], PARAFAC is nowadays considered a standard algorithm
to process EEM data [6]. In the case of tridimensional EEM datasets,
PARAFAC performs a three-way tensor decomposition

EEM = A ⊗ B ⊗ C + U (1)

In case the first array dimension of EEM is related to the sample iden-
tification, matrix A contains sample scores and B and C the respective
loadings, related with excitation and emission spectra. U represents
the unjustified residual information of the initial dataset.

Solving Eq. (1) requires an alternating least-squares approach
(ALS), which permits the imposition of various restrictions [5]. In
the case of EEM, non-negativity provides PARAFAC with the ability
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to directly retrieve information with chemical meaning. The main
drawback with PARAFAC is related with its difficulty in dealing
with non-trilinear information such as light scattering phenomena
(Rayleigh and Raman) [5,7], although several approaches have been
described in the literature in order to compensate for this deficiency
[7-9].

1.1.2. Independent Component Analysis
Independent Component Analysis (ICA) is based on the Blind

Source Separation (BSS) algorithm [10], and has been developed to
deconvolute mixed signals by maximizing their respective indepen-
dence [11]. Measured signals (X) may be decomposed into signal
sources, representing specific individual signal contributions, and
respective weights, using the following representation [12]

X = S.A + V (2)

where S and A stand for the loadings of the signal sources, and
respective mixing information matrix, the scores, respectively. Sim-
ilarly to Eq. (1), V matrix corresponds to the unjustified residual
information.

In previous work, ICA signal deconvolution [13-15] was shown
to be a very powerful method for dealing with spectral information,
allowing the identification and quantification of the contributing
species present in different systems. However, the ICA algorithm
requires X to be a bidimensional (two-way) dataset. In order to pro-
cess EEM information, ICA imposes a pre- and post-processing array
unfolding and folding back i.e., an array reshape. In the absence of
further restrictions, ICA solutions have to be carefully assessed before
converting to chemical information. Data simulation and the use of
adequate blind samples may be advised in order to familiarize with
ICA [13,14].

In this study, we aim to establish a parallel between PARAFAC
and ICA to compare the methods and their modeling performances,

and establish the correspondence between Eqs. (1) and 2 in terms of
loadings and scores.

2. Procedures

2.1. Datasets

Selected datasets are all representative of EEM information. The
first two, Claus and Dorrit, correspond to very simple systems,
synthetic mixtures, simulated in the lab, in which the number of
components and respective composition are known and are used as
blind samples. In order to better evaluate the two algorithms, extra
datasets are simulated using semi-empirical and other simulations.

2.1.1. Claus
The Claus dataset [5] consists of five simple laboratory-made

samples (I = 5). Each sample contains different amounts of trypto-
phan, tyrosine and phenylalanine (k0 = 3) dissolved in phosphate
buffered water. The samples were measured by fluorescence (exci-
tation 240–300 nm, emission 250–450 nm, 1 nm intervals) on a PE
LS50B spectrofluorometer with excitation slit-width of 2.5 nm, an
emission slit-width of 10 nm and a scan-speed of 1500 nm/s. This
dataset is available online [16].

Fig. 1 represents all samples (I = 5) contained in the Claus dataset,
with the respective mixture composition detailed in Table 1.

2.1.2. Dorrit
The Dorrit dataset, EEM(I,J,Q) [7], consists of I = 27 synthetic

samples containing different concentrations of four analytes (hydro-
quinone, tryptophan, phenylalanine and DOPA) (k0 = 4) measured
on a Perkin-Elmer LS50 B fluorescence spectrometer. Each fluores-
cence landscape corresponding to an individual sample consists of
J = 121 emission wavelengths (241–481 nm) and Q = 24 excita-
tion wavelengths (200–315 nm taken every 5 nm). According to the

Fig. 1. Representation of excitation-emission fluorescence matrix (EEM) contour plots of samples (I = 5) contained in Claus dataset; horizontal scale refers to excitation (240–
300 nm) and vertical scale to emission (250–450 nm). Higher fluorescence intensities in red.
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