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a b s t r a c t

This paper presents a computational method for solving a class of system of nonlinear sin-
gular fractional Volterra integro-differential equations. First, existences of a unique solu-
tion for under studying problem is proved. Then, shifted Chebyshev polynomials and
their properties are employed to derive a general procedure for forming the operational
matrix of fractional derivative for Chebyshev wavelets. The application of this operational
matrix for solving mentioned problem is explained. In the next step, the error analysis of
the proposed method is investigated. Finally, some examples are included for demonstrat-
ing the efficiency of the proposed method.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Fractional calculus has been used to model physical and engineering processes that are found to be best described by frac-
tional differential equations. Recently, fractional calculus has attracted much attention since it plays an important role in
many fields of science and engineering, for example see [1–9]. As we know, many mathematical models of real phenome-
nons arising in various fields of science and engineering are linear or nonlinear systems. Nevertheless, most differential sys-
tems used to describe physical phenomena are integer-order systems [10]. It is worth mentioning that with the development
of fractional calculus, the behavior of many systems can be described by using the fractional differential and fractional inte-
gro-differential systems (see [11] and references therein). In this paper we consider the following system of nonlinear sin-
gular fractional Volterra integro-differential equations:

Daj
� yjðtÞ ¼ fjðt; y1ðtÞ; y2ðtÞ; . . . ; ynðtÞÞ þ

Z t

a
ðt � sÞ�bj Kjðt; s; y1ðsÞ; y2ðsÞ; . . . ; ynðsÞÞds

yjðaÞ ¼ y0j; j ¼ 1;2; . . . ; n;
ð1Þ

where yj : ½a; b� ! R is the unknown function, y0j 2 R; fj : ½a; b� � Rn ! R is continues function and Kj : ½a; b� � ½a; b� � Rn ! R

also are continues functions that satisfy adequate Lipschitzian conditions, Daj
� is the derivative of yj of order aj in the Caputo

sense, aj > 0;0 < bj < 1.
An usual way for solving functional equations is to express the solution as a linear combination of the so-called basis

functions. These basis functions can for instance be orthogonal or not orthogonal bases. Approximation by orthogonal family
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of basis functions has found wide application in science and engineering [12]. The most frequently used orthogonal function
are sine–cosine functions, block pulse functions, Legendre, Chebyshev and Laguerre polynomials. The main idea of using an
orthogonal basis is that the problem under consideration reduces to a system of linear or nonlinear algebraic equations [12].
This can be done by truncated series of orthogonal basis function for the solution of the problem and using the operational
matrices [13]. It is well known that we can approximate any analytic function, C1½a; b�, by the eigenfunctions of certain sin-
gular Sturm–Liouville problems such as Legendre or Chebyshev orthogonal polynomials. In this manner, the truncation error
approaches zero faster than any negative power of the number of basic functions used in the approximation [14]. This phe-
nomenon is usually referred to as ‘‘spectral accuracy’’ [14].

Wavelets theory is a relatively new and an emerging area in mathematical research (for example see [15–18] and references
therein). It has been applied in a wide range of engineering disciplines. Wavelets are localized functions, which are the basis for
energy-bounded functions and in particular for L2ðRÞ. So that localized pulse problems can be easily approached and analyzed
[15–18]. They are used in system analysis, optimal control, numerical analysis, signal analysis for wave form representation
and segmentations, time–frequency analysis and fast algorithms for easy implementation [19]. However wavelets are just an-
other basis set which offers considerable advantages over alternative basis sets and allows us to attack problems not accessible
with conventional numerical methods. Their main advantages are as [20]: the basis set can be improved in a systematic way,
different resolutions can be used in different regions of space, the coupling between different resolution levels is easy, there are
few topological constraints for increased resolution regions, the Laplace operator is diagonally dominant in an appropriate
wavelet basis, the matrix elements of the Laplace operator are very easy to calculate and the numerical effort scales linearly
with respect to the system size. Chebyshev wavelets method as a specific kind of wavelets methods has been widely applied for
solving functional equations, for example see [21–25]. In this communication, it is worth mentioning that Chebyshev wavelets
has mutually spectral accuracy, orthogonality and other useful mentioned properties of wavelets.

The main purpose of this paper is to apply Chebyshev wavelets method for solving nonlinear systems of singular frac-
tional Volterra integro-differential equations of type (1). First, existence of a unique solution for under study problem is
proved and then some useful theorem about fractional operational matrix of derivative for Chebysheve polynomails and
Chebyshev wavelets are proved. After that the operational matrix of fractional derivative of Chebysheve wavelets is applied
to obtain approximate solution of (1). Error analysis of the proposed method is investigated. This paper is organized as fol-
lows: In Section 2 some necessary definitions of the fractional calculus are introduced. In Section 3 existence of a unique
solution for problem under study is proved. In Section 4 Chebyshev polynomials and Chebyshev wavelets are introduced.
In Section 5 the proposed method is described. In Section 6 error analysis of the proposed method is investigated. In Section 7
some numerical examples are presented. Finally a conclusion is drawn in Section 8.

2. Basic definitions

With the development of theories of fractional derivatives and integrals, many definitions appear, such as Riemann–Liou-
ville and Caputo fractional differential–integral definition [26], which can be described as follows:

(1) Riemann–Liouville definition:

Daf ðtÞ ¼
dnf ðtÞ

dtn ; a ¼ n 2 N;

1
Cðn�aÞ

dn

dtn

R t
0

f ðsÞ
ðt�sÞa�nþ1 ds; 0 6 n� 1 < a < n:

8<: ð2Þ

Fractional integral of order a is defined as:

Iaf ðtÞ ¼ 1
CðaÞ

Z t

0
ðt � sÞa�1f ðsÞds; I0f ðtÞ ¼ f ðtÞ: ð3Þ

(2) Caputo definition:

Da
� f ðtÞ ¼

dnf ðtÞ
dtn ; a ¼ n 2 N;

1
Cðn�aÞ

R t
0

f ðnÞðsÞ
ðt�sÞa�nþ1 ds; t > 0; 0 6 n� 1 < a < n:

8<: ð4Þ

The useful relation between the Riemann–Liouvill operator and Caputo operator is given by the following expression:

IaDa
� f ðtÞ ¼ f ðtÞ �

Xn�1

k¼0

f ðkÞð0þÞ t
k

k!
; t > 0; ðn� 1 < a 6 nÞ: ð5Þ

Also for the Caputo’s derivative we have Da
�c ¼ 0, in which c is a constant and

Da
� t

n ¼
0; n < dae; n 2 Zþ

Cðnþ1Þ
Cðnþ1�aÞ t

n�a; n P dae; n 2 Zþ

(
; ð6Þ

where we use the ceiling function dae to denote the smallest integer greater than or equal to a. For more details about frac-
tional calculus and its properties see [26].
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