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a b s t r a c t

In this paper, we analyze the robustness of global exponential stable stochastic delayed
systems subject to the uncertainty in parameter matrices. Given a globally exponentially
stable systems, the problem to be addressed here is how much uncertainty in parameter
matrices the systems can withstand to be globally exponentially stable. The upper bounds
of the parameter uncertainty intensity are characterized by using transcendental equation
for the systems to sustain global exponential stability. Moreover, we prove theoretically
that, the globally exponentially stable systems, if additive uncertainties in parameter
matrices are smaller than the upper bounds arrived at here, then the perturbed systems
are guaranteed to also be globally exponentially stable. Two numerical examples are pro-
vided here to illustrate the theoretical results.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Time delays are often encountered in various practical systems such as chemical processes, neural networks and long
transmission lines in pneumatic systems [1,2]. It has been shown that the existence of time-delays may lead to oscillation,
divergence, instability, greatly increasing the difficulty of stability analysis and control design. Many researchers in the field
of control theory and engineering study the robust control of time-delay systems. The main methods of stability analysis can
be classified into two types: frequency-domain and time-domain. The former use the sum of squares technique. As to the
time-domain approach, Lyapunov functional is a powerful tool, which can deal with time varying delays.

For most successful applications of the systems, the stability is usually a prerequisite. The stability of the systems depends
mainly on their parametrical configuration. Moreover, in the applications of the systems, external random disturbances and
time delays are common and hardly avoided. It is known that random disturbances and time delays in the systems may re-
sult in oscillation or instability of the nonlinear systems. The stability analysis of the delayed systems and the systems with
external random disturbances has been widely investigated in recent years (see, e.g., [3–8], and the references cited therein).

In practice, when we estimate systems parameter matrices, there are always some uncertainty and errors. For the param-
eter matrices uncertainty, two types are studied widely: time varying structured uncertainty [9–12] and polytopic-type
uncertainty [13–15]. If the uncertainty is too large, the stable systems may becomes instable, the intensity of parameter
matrices uncertainty is often the sources of instability and they can destabilize stable delay systems if it exceeds its limits.
The instability depends on the intensity of parameter matrices uncertainty. Many people analyze the robust stability of
parameter uncertainty systems for given structured uncertainty or polytopic-type uncertainty. For a stable delay system,
if the intensity of parameter matrices uncertainty is low, the perturbed delay system may still be stable. Therefore, it is inter-
esting to determine how much parameter matrices uncertainty of stable delay systems can withstand without losing global
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exponential stability. Shen et al. [10] investigated the robustness of global exponential stability of recurrent neural networks
in the presence of time delays and random disturbances. Although the various stability properties of stable delay systems
have been extensively investigated using the Lyapunov and the linear matrix inequality methods, the robustness of the glo-
bal stability for parameter matrices of systems is rarely analyzed directly by estimating the upper bounds of parameter
matrices uncertainty level.

Motivated by the above discussion, our aim in this paper is directly to quantify the parameter uncertainty level for stable
systems only use the definition of stability. That is, we characterize the robustness for parameter matrices in general form of
systems by deriving the upper bounds of parameter matrices uncertainty for global exponential stability. We prove theoret-
ically that, for globally exponentially stable systems, if additive parameter matrices uncertainty is smaller than the derived
upper bounds herein, then the systems are guaranteed to be globally exponentially stable.

The remainder of this paper is organized as follows. Section 2 provides problem formulation. Section 3 discusses the
impact of uncertainty in parameter matrices for the global exponential stability of systems. In Section 4, two numerical
examples are given to illustrate the theoretical results. Finally, concluding remarks are given in Section 5.

2. Problem formulation

Throughout this paper, unless otherwise specified, Rn and Rn�m denote, respectively, the n-dimensional Euclidean space
and the set of n�m real matrices. Let ðX;F ; fF tgtP0; PÞ be a complete probability space with a filtration fF tgtP0 satisfying
the usual conditions (i.e., the filtration contains all P-null sets and is right continuous). xðtÞ be a scalar Brownian motion
defined on the probability space. If A is a matrix, its operator norm is denoted by kAk = sup fjAxj : jxj ¼ 1g, where j � j is
the Euclidean norm. Denote L2

F0
ð½��s;0�; RnÞ as the family of all F 0� measurable Cð½��s;0�; RnÞ valued random variables

w ¼ fwðhÞ : ��s 6 h 6 0g such that sup��s6h60EjwðhÞj2 <1 where Efg stands for the mathematical expectation operator with
respect to the given probability measure P.

Consider a stochastic delayed systems

dxðtÞ ¼ ½AxðtÞ þ Bxðt � sðtÞÞ�dt þ ½W1xðtÞ þW2xðt � sðtÞÞ�dxðtÞ; t > t0

xðtÞ ¼ wðt � t0Þ 2 L2
F0
ð½t0 � �s; t0�; RnÞ; t0 � �s 6 t 6 t0 ð1Þ

where xðtÞ ¼ ðx1ðtÞ; . . . ; xnðtÞÞT 2 Rn is the state vector of the system, t0 2 Rþ and w 2 Rn are the initial values, A 2 Rn�n;B 2 Rn�n

are parameter matrices, W1;W2 are Rn�n matrices, which stand for noise function. We assume that origin is an equilibrium
point of (1), sðtÞ is a time varying delay that satisfies sðtÞ : ½t0;þ1Þ ! ½0; �s�; s0ðtÞ 6 l < 1;w ¼ fwðsÞ : ��s 6 s 6 0g 2
Cð½��s;0�;RnÞ; �s is the maximum of delay.

Now we define the global exponential stability of the state of systems (1).

Definition 1 [16]. Systems (1) is said to be almost sure globally exponentially stable if for any t0 2 Rþ;w 2 L2
F 0
ð½��s;0�; RnÞ,

there exist a > 0 and b > 0 such that 8t P t0; jxðt; t0;wÞj 6 akwk expð�bðt � t0ÞÞ hold almost surely; i.e., the Lyapunov
exponent lim supt!1ðln jxðt; t0;wÞj=tÞ < 0 almost surely, where xðt; t0;wÞ is the state of system (1). Systems (1) is said to be
mean square globally exponentially stable if for any t0 2 Rþ;w 2 L2

F 0
ð½��s;0�; RnÞ, there exist a > 0 and b > 0 such that

8t P t0; Ejxðt; t0;wÞj2 6 akwk expð�bðt � t0ÞÞ hold; i.e., the Lyapunov exponent lim supt!1ðln ðEjxðt; t0;wÞj2Þ=tÞ < 0, where
xðt; t0;wÞ is the state of systems (1).

From the definition, it is clear that the almost sure global exponential stability of systems (1) implies the mean square
global exponential stability of systems (1) [16], but not vice versa. However, as (1) is a linear system, we have the following
lemma [16, Theorem 6.2, pp. 175].

Lemma 1. The global exponential stability in sense of mean square of systems (1) implies the almost sure global exponential sta-
bility of systems (1).

Numerous criteria for ascertaining the global exponential stability of systems (1) have been developed; e.g., [10,11,15] and the
references therein.

3. Main results

Now, the question is given a globally exponentially stable stochastic system, how much the parameter uncertainty inten-
sity of parameter matrices the systems can bear? We first consider the parameter uncertainty intensity adding to parameter
matrix A, the perturbed systems changes as

dyðtÞ ¼ ½ðAþ DAÞyðtÞ þ Byðt � sðtÞÞ�dt þ ½W1yðtÞ þW2yðt � sðtÞÞ�dxðtÞ; t > t0

yðtÞ ¼ wðt � t0Þ 2 L2
F0
ð½t0 � �s; t0�; RnÞ; t0 � �s 6 t 6 t0 ð2Þ

where the notations of (2) are the same as in Section 2, DA stands for parameter matrix uncertainty intensity.
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