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a b s t r a c t

This paper develops a new swing-up control method for the cart-pendulum system via dis-
crete mechanics. The swing-up control law consists of two parts: the swing-up stage and
the stabilization one. In the swing-up stage, we use a controller based on a discrete Lyapu-
nov function and it can swing up the pendulum. Then, in the stabilization stage, we utilize a
stabilizing controller based on the linearized system and discrete-time optimal regulator
theory. In addition, transformation methods from discrete control inputs into continuous
zero-order hold inputs are introduced. From some simulation results, we can confirm that
the cart-pendulum system is swung up and stabilized by our new method.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Recently, discrete mechanics has been focused on as a new discretizing tool and a new numerical solution method [1–5]. In
discrete mechanics, some important fundamental concepts of classical mechanics are discretized, and discrete Hamilton’s
principle, discrete Lagrange–d’Alembert principle and discrete Euler–Lagrange equations are introduced. It is known that
discrete mechanics has some interesting characteristics (see [3,4] for the details); (i) discrete mechanics shows less numer-
ical errors (approximation error) in comparison with other numerical solutions of a same order such as the Euler method and
the Runge–Kutta method, (ii) it can describe energies for both conservative and dissipative systems with less errors, (iii) the
discrete model (discrete Euler–Lagrange equation) has a property of the symplectic mapping and the implicit numerical
solution, (iv) some laws of physics such as Noether’s theorem are satisfied, (v) numerical simulations for larger sampling
times indicate can work and show good calculation results with less errors, Hence, we can say that discrete mechanics
has a possibility of controller synthesis with high compatibility with computers, and researches on theoretical analysis
and applications of discrete mechanics are now in progress.

In the past, some studies on applications of discrete mechanics have been done; controller synthesis from the standpoint
of controlled Lagrangian [6,7], optimal control based on discrete mechanics and an application to hovercrafts [5]. We have
derived some results on discrete mechanics from both analysis and synthesis aspects as follows: solvability analysis of im-
plicit discrete Euler–Lagrange equations and stabilization control for the discrete cart-pendulum [11,18], transformation to
continuous control inputs and stabilization control for the continuous cart-pendulum system [12,19], experimental evalua-
tion of discrete mechanics for the actual cart-pendulum system [13,19], applications to gait generation for the compass-type
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biped robot [14–17]. In these studies, we have shown the effectiveness of discrete mechanics for control theory and possi-
bility of applications for mechanical systems. However, some of these work deal with only a stabilization problem of the
cart-pendulum system, which is included in the field of linear control problems. If we demonstrate the effectiveness of dis-
crete mechanics for nonlinear control problems, we have to treat a swing-up control problem for the cart-pendulum system,
which is one of the difficult benchmark problems in nonlinear control theory [24–27,29,30]. For the swing-up control prob-
lem of the cart-pendulum system and the pendubot, some control methods based on the models derived by normal contin-
uous mechanics have been proposed; the energy control method [8], a control strategy based on an energy of the system [9]
and so on. However, A swing-up control strategy based on discrete mechanics had not been proposed. Recently, [10] pro-
poses a swing-up control method based on discrete mechanics and optimal control [5] for the double pendulum system.

Hence, the main purpose of this paper is to develop a new swing-up control method for the cart-pendulum system from
the viewpoint of discrete mechanics, which is totally different from the method in [10]. Investigation on the application
potentiality of discrete mechanics to nonlinear control theory is also another important purpose of this paper. This paper
is organized as follows. In Section 2, some fundamental concepts on discrete mechanics are summarized. We also discuss
a condition that the linearly approximated systems of the discrete Euler–Lagrange systems is represented as explicit equa-
tions. Next, Section 3 derives mathematical models of both continuous and discrete cart-pendulum systems via continuous
and discrete mechanics, respectively. In Section 4, we then develop a new swing-up control method based on discrete
mechanics for the discrete cart-pendulum. The swing-up controller consists of 2 stages: the swing-up stage and the stabil-
ization one. We also discuss a transformation method of a discrete control input into a zero-order hold input, which can con-
trol the continuous cart-pendulum system. Finally, in order to confirm the effectiveness of our new method, some numerical
simulations are illustrated in Section 5.

2. Discrete mechanics

2.1. Basic concepts of discrete mechanics

This section summarizes some basic concepts in discrete mechanics. For more details about discrete mechanics, see [1–5].
Let Q be an n-dimensional configuration manifold and q 2 Rn be a generalized coordinate of Q. We also refer to TqQ as the

tangent space of Q at a point q 2 Q and _q 2 TqQ denotes a generalized velocity. Moreover, we consider a time-invariant
Lagrangian as Lcðq; _qÞ : TQ ! R. We first explain about the discretization method. The time variable t 2 R is discretized as
t ¼ kh ðk ¼ 0;1;2; . . .Þ by using a sampling interval h > 0. We denote qk as a point of Q at the time step k, that is, a curve
on Q in the continuous setting is represented as a sequence of points qd :¼ fqkg

N
k¼0 in the discrete setting. The transformation

method of discrete mechanics is carried out by the replacement:

q � ð1� aÞqk þ aqkþ1; _q � qkþ1 � qk

h
; ð1Þ

where q is expressed as a internally dividing point of qk and qkþ1 with an internal division ratio a ð0 < a < 1Þ. We then define
a discrete Lagrangian:

Ld
aðqk; qkþ1Þ :¼ hL ð1� aÞqk þ aqkþ1;

qkþ1 � qk

h

� �
ð2Þ

and a discrete action sum:

Sd
aðq0; q1; � � � ; qNÞ ¼

XN�1

k¼0

Ld
aðqk; qkþ1Þ: ð3Þ

We next summarize the discrete equations of motion. Consider a variation of points on Q as dqk 2 Tqk
Q ðk ¼ 0;1; . . . ;NÞ

with the fixed condition dq0 ¼ dqN ¼ 0. In analogy with the continuous setting, we define a variation of the discrete action
sum (3) as

dSd
aðq0; q1; � � � ; qNÞ ¼

XN�1

k¼0

dLd
aðqk; qkþ1Þ ð4Þ

as shown in Fig. 1. The discrete Hamilton’s principle states that only a motion which makes the discrete action sum (3) station-
ary is realized. Calculating (4), we have

dSd
a ¼

XN�1

k¼1

fD1Ld
aðqk; qkþ1Þdqk þ D2Ld

aðqk�1; qkÞgdqk; ð5Þ

where D1 and D2 denotes the partial differential operators with respect to the first argument and the second one, respec-
tively. Consequently, from the discrete Hamilton’s principle and (5), we obtain the discrete Euler–Lagrange equations:

D1Ld
aðqk; qkþ1Þ þ D2Ld

aðqk�1; qkÞ ¼ 0; k ¼ 1; . . . ;N � 1; ð6Þ
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