Accepted Manuscript

Color tunable emission and energy transfer of Ce3+/Dy3+ codoped Ba3La2(BO3)4 phosphor for UV white LEDs

Fen Xiao, Rongxi Yi, Huiling Yuan, Guanjian Zang, Chengning Xie

Values (H. A. Pagasador 201) (ENT. 100 ECC)

SPECTROCHIMICA
ACTA

FART A. WOLFICLAN AND BIONOLECTLAN SPECTROSCOPY

Figure 100 ECC 100

PII: S1386-1425(18)30451-7

DOI: doi:10.1016/j.saa.2018.05.061

Reference: SAA 16095

To appear in: Spectrochimica Acta Part A: Molecular and Biomolecular

Spectroscopy

Received date: 1 December 2017

Revised date: 11 May 2018 Accepted 15 May 2010

date: 15 May 2018

uate.

Please cite this article as: Fen Xiao, Rongxi Yi, Huiling Yuan, Guanjian Zang, Chengning Xie, Color tunable emission and energy transfer of Ce3+/Dy3+ codoped Ba3La2(BO3)4 phosphor for UV white LEDs. The address for the corresponding author was captured as affiliation for all authors. Please check if appropriate. Saa(2017), doi:10.1016/j.saa.2018.05.061

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

CCEPTED MANUSCRIPT

Color tunable emission and energy transfer of Ce³⁺/Dy³⁺ codoped

Ba₃La₂(BO₃)₄ phosphor for UV white LEDs

Fen Xiao, Rongxi Yi, Huiling Yuan, Guanjian Zang, Chengning Xie*

College of Mechanical and Electrical Engineering, Jinggangshan University, Ji'an, 343009, China

Abstract

Ba₃La₂(BO₃)₄:Ce³⁺,Dy³⁺ sub-micrometer-sized phosphors Polycrystalline

synthesized by solid-state reaction under a weak reductive atmosphere. The structure, static

and time-resolved photoluminescence are investigated. Under the near-ultraviolet excitation,

the Ba₃La₂(BO₃)₄:Dy³⁺ phosphors emit white light with three intense emission bands centered

at 483, 575, and 665 nm. The efficient energy transfer from Ce³⁺ to Dy³⁺ in Ba₃La₂(BO₃)₄

phosphor was found by excitation/emission spectra and decay time measurements, and the

resonant type was demonstrated by a dipole-dipole mechanism. A tunable emission hue from

blue (0.18, 0.20) to blue-white (0.26, 0.29) and eventually to white (0.32, 0.33) was obtained

in Ba₃La₂(BO₃)₄:Ce³⁺,Dy³⁺ phosphors. Owing to the broad UV excitation band, indicating that

Ba₃La₂(BO₃)₄:Ce³⁺,Dy³⁺ phosphors can be considered as a potential candidate for

ultraviolet-based white light-emitting diodes.

Keywords: Phosphor; Luminescence; Borate; Energy transfer.

To whom correspondence should be addressed, electronic mail: stevexiecn@gmail.com

1

Download English Version:

https://daneshyari.com/en/article/7668034

Download Persian Version:

https://daneshyari.com/article/7668034

<u>Daneshyari.com</u>