
Identification of constitutive parameters for fractional
viscoelasticity

Zhao Xiao, Yang Haitian ⇑, He Yiqian
State Key Lab of Structural Analysis for Industrial Equipment, Dept. of Engineering Mechanics, Dalian University of Technology, 116024 Dalian, PR China

a r t i c l e i n f o

Article history:
Received 17 February 2012
Received in revised form 26 December 2012
Accepted 21 May 2013
Available online 31 May 2013

Keywords:
Parameters identification
Inverse problem
Viscoelasticity
Fractional derivatives
Ant colony optimization algorithm

a b s t r a c t

This paper develops a numerical model to identify constitutive parameters in the fractional
viscoelastic field. An explicit semi-analytical numerical model and a finite difference (FD)
method based numerical model are derived for solving the direct homogenous and region-
ally inhomogeneous fractional viscoelastic problems, respectively. A continuous ant colony
optimization (ACO) algorithm is employed to solve the inverse problem of identification.
The feasibility of the proposed approach is illustrated via the numerical verification of a
two-dimensional identification problem formulated by the fractional Kelvin–Voigt model,
and the noisy data and regional inhomogeneity etc. are taken into account.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

The fractional derivative has become an extremely adequate tool to model mechanical properties of viscoelastic materials
[1], because it is such an intimate descriptor of viscoelastic materials behavior that only a small number of parameters are
enough to accurately represent a particular material [1–5]. An important problem connected with the fractional rheological
models, as mentioned by Lewandowski [6], is the estimation of the model parameters from experimental data. As a matter of
fact, there are a number of literatures related to this issue. However, these work seem to be mainly driven by determining
parameters of simple fractional viscoelastic devices (such as viscoelastic dampers, dynamic vibration isolators etc. [6–13]), or
by identifying fractional viscoelastic parameters of simple and homogeneous structures (such as beams [14]), instead of the
parameters identification of a homogeneous/inhomogeneous fractional viscoelastic field. On the other hand, these work
were mostly carried out in the frequency domain. When measurement data are limited and polluted, an error may arise
in the integral transform from time domain to the frequency domain, as shown in the Section 4.

With the above consideration, this paper attempts to tackle with two issues, i.e.

1. The identification of constitutive parameters for fractional viscoelastic fields, instead of for simple devices or simple
homogeneous structures.

2. The identification of fractional constitutive parameters in the time domain, instead of in the frequency domain.

In the Section 1, a Finite Element (FE) equation is derived for the direct problem, which can be solved by the Laplace trans-
form or FD method for 2-D homogenous and regionally inhomogeneous fractional viscoelastic fields.
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In Sections 2 and 3, the identification of fractional viscoelastic constitutive parameters is treated as an optimization prob-
lem that is solved by an ACO algorithm [15].

The ACO algorithm needs the solution provided in the Section 1, but does not need derivatives of solutions with respect to
constitutive parameters. These derivatives are demanded for the gradient based algorithm, and seem unease to calculate
accurately due to a difficulty caused by the Gamma function. Although the ACO algorithm has successfully been applied
to solve various kinds of inverse problems [16–19], it seems first time to be used to solve inverse fractional viscoelastic
problems.

In the Section 4, an identification problem of fractional viscoelastic constitutive parameters for a plate with a rectangular
opening is investigated. The impacts of regional inhomogeneity, noisy data, and spatial arrangement of measurement points
etc. on the solution are taken into account. The solutions obtained by the proposed approach are less sensitive to the noisy
data given in this paper, and different spatial arrangements of measurement points seem no significant impact on the solu-
tion. Numerical results indicate that the proposed approach is available for the identification of constitutive parameters of
homogeneous/regionally inhomogeneous fractional viscoelastic fields in the time domain.

2. The governing equations of 2-D direct fractional viscoelastic problem

The equilibrium equation of two-dimensional quasi-static problems is given by [20]

LTrþ b ¼ 0 x 2 V ð1Þ

The relationship between the strain and displacement is described by

eðtÞ ¼ LuðtÞ ð2Þ
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where rðtÞ ¼ frx1 ðtÞ;rx2 ðtÞ;rx1x2 ðtÞg
T and eðtÞ ¼ fex1 ðtÞ; ex2 ðtÞ; ex1x2 ðtÞg

T stand for the vectors of stress and strain, respectively,
x = {x1, x2} represents the vector of coordinates, b refers to the vector of the body force, and uðtÞ ¼ fux1 ðtÞ;ux2 ðtÞg

T represents
the vector of displacements.

The boundary conditions are specified by

uðtÞ ¼ uSðtÞ x 2 Su ð4Þ

FðtÞ ¼ nrðtÞ ¼ FSðtÞx 2 Sr ð5Þ

where n denotes the vector of unit outside normal along the boundary, uS(t) and FS(t) are prescribed functions, the subscripts
u and r refer to the ‘displacement’ and ‘stress’, respectively, and Su + Sr = S = oV designates the whole boundary of the
problem.

We assume that V consists of MT sub-domains, i.e. V ¼
PMT

j¼1Vj, and the constitutive relationship in Vj is characterized by
[1,6]
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where Ej
0 and Ej

1 are the static and asymptotic storage moduli, respectively, tj refers to the Poisson ratio, and Daj denotes a
Caputo fractional derivative operator defined by [21]

Daj ðzðtÞÞ ¼ 1
Cð1� ajÞ
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where Te is the up-bound of time, C(�) refers to the Gamma function defined by [22]

CðzÞ ¼
Z 1

0
e�vvz�1dv ð11Þ
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