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a b s t r a c t

This paper presents an implicit orthotropic model based on the Continuum Damage
Mechanics isotropic models. A mapping relationship is established between the behaviour
of the anisotropic material and that of an isotropic one. The proposed model is used to sim-
ulate the failure loci of common orthotropic materials, such as masonry, fibre-reinforced
composites and wood. The damage model is combined with a crack-tracking technique
to reproduce the propagation of localized cracks in the discrete FE problem. The proposed
numerical model is used to simulate the mixed mode fracture in masonry members with
different orientations of the brick layers.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The mechanical behaviour of anisotropic materials involves properties that vary from point to point, due to composite or
heterogeneous nature, type and arrangement of constituents, presence of different phases or material defects. A macroscopic
continuum model aimed at the phenomenological description of anisotropic materials should account for (i) the elastic
anisotropy, (ii) the strength anisotropy (or yield anisotropy, in case of ductile materials) and (iii) the brittleness (or softening)
anisotropy [1].

Several materials can be considered, with an acceptable degree of approximation, to be orthotropic, even though some of
them are not so in the whole range of behaviour. Modelling the elastic orthotropy does not present big difficulties, since it is
possible to use the general elasticity theory [2]. On the other hand, the need to model the strength and nonlinear orthotropic
behaviour requires the formulation of adequate constitutive laws, which can be based on such theories as plasticity or dam-
age. In particular, although several failure functions have been proposed, the choice of a suitable orthotropic criterion still
remains a complex task.

One of the more popular attempts to formulate orthotropic yield functions for metals in the field of plasticity theory is
due to Hill [3,4], who succeeded in extending the von Mises [5] isotropic model to the orthotropic case. The main limitation
of this theory is the impossibility of modelling materials that present a behaviour which not only depends on the second
invariant of the stress tensor, i.e. the case of geomaterials or composite materials. On the other hand, Hoffman [6] and
Tsai–Wu [7] orthotropic yield criteria are useful tools for the failure prediction of composite materials.
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For the description of incompressible plastic anisotropy, not only yield functions [8] and phenomenological plastic poten-
tials [9] have been proposed over the years. Other formulation strategies have been developed, related to general transfor-
mations based on theory of tensor representation [10,11]. A particular case of this general theory, which is based on linearly
transformed stress components, has received more attention. This special case is of practical importance because convex for-
mulations can be easily developed and, thus, stability in numerical simulations is ensured. Linear transformations on the
stress tensor were first introduced by Sobotka [12] and Boehler and Sawczuck [13]. For plane stress and orthotropic material
symmetry, Barlat and Lian [14] combined the principal values of these transformed stress tensors with an isotropic yield
function. Barlat et al. [15] applied this method to a full stress state and Karafillis and Boyce [16] generalized it as the so-called
isotropic plasticity equivalent theory with a more general yield function and a linear transformation that can accommodate
other material symmetries. Betten [17,18] introduced the concept of mapped stress tensor to express the behaviour of an
anisotropic material by means of an equivalent isotropic solid (mapped isotropic problem). The same approach was later
refined by Oller et al. [19–23] with the definition of transformation tensors to relate the stress and strain tensors of the
orthotropic space to those of a mapped space, in which the isotropic criterion is defined. The stress and strain transformation
tensors are symmetric and rank-four and establish a one-to-one mapping of the stress/strain components defined in one

Nomenclature

Ar stress transformation tensor
Ae strain transformation tensor
C linear-elastic constitutive tensor
d damage index
D specific dissipated energy
Ei Young’s modulus referred to i-axes
fii uniaxial strength in the i-th direction
fij pure shear strength in the ij-th plane
F12 interaction coefficient of Tsai–Wu criterion
Gf,i mode I fracture energy per unit area along the i-th direction
Gij shear modulus in the ij-th plane
kf fibre volume fraction
K parameter of Faria’s criterion
n parameter of Hankinson’s formula
r damage threshold internal variable
rij direction cosines
xi coordinate system
e strain tensor
h angle of orthotropy
K damage threshold surface shape tensor
vij Poisson’s ratio in the ij-th plane
ri i-th principal stress
r stress tensor
�r effective stress tensor
s equivalent stress
U damage criterion function
w free energy potential
w0 elastic free energy potential
: double contraction
0 apex denoting vectors/tensors defined in the principal axes of orthotropy
* apex assigned to scalars/tensors defined in the mapped space
h�i Macaulay brackets

Acronyms
CDM Continuum Damage Mechanics
CMOD crack mouth opening displacement
E-FEM Elemental enrichment Finite Element Method
FE finite element
FEM Finite Element Method
FRP fiber reinforced polymer
SCA Smeared Crack Approach
X-FEM eXtended Finite Element Method
2D two-dimensional
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