Accepted Manuscript

Rapid detection of HSO4- in water: Novel immobilized azoazomethine colorimetric anion receptors on solid supports

Saba Mahdavi Hezaveh, Hamid Khanmohammadi, Mojgan Zendehdel

PII: S1386-1425(18)30237-3

DOI: doi:10.1016/j.saa.2018.03.035

Reference: SAA 15907

To appear in: Spectrochimica Acta Part A: Molecular and Biomolecular

Spectroscopy

Revised date: 5 December 2017 Revised date: 19 February 2018

Accepted 12 March 2018

date:

Please cite this article as: Saba Mahdavi Hezaveh, Hamid Khanmohammadi, Mojgan Zendehdel , Rapid detection of HSO4– in water: Novel immobilized azo-azomethine colorimetric anion receptors on solid supports. The address for the corresponding author was captured as affiliation for all authors. Please check if appropriate. Saa(2017), doi:10.1016/j.saa.2018.03.035

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Rapid detection of HSO₄⁻ in water: Novel immobilized azo-

azomethine colorimetric anion receptors on solid supports

Saba Mahdavi Hezaveh, Hamid Khanmohammadi *, Mojgan Zendehdel

Department of Chemistry, Faculty of science, Arak University, Arak 38156-8-8349, Iran

Abstract

The immobilized azo-azomethine receptors on amorphous SiO₂, S-B, SiO₂ nanoparticles, S-NPs,

and NaY zeolite, S-ZY, have been prepared and applied as solid phase sensors for detection of

HSO₄, over other interfering anions, in 100% aqueous media. Remarkably, S-B and S-ZY show

unique and rapid sensitivity towards HSO₄-, which could it easily visualized through naked eye

detection even at 5×10^{-4} molL⁻¹ and 4×10^{-4} molL⁻¹, respectively. The fabricated solid phase sensors

were characterized using powder XRD diffraction, TGA-DTA, FE-SEM and also FT-IR

techniques. Moreover, the related molecular anion receptor, **HL**, has been prepared and used for

naked eye detection of F⁻ and AcO⁻, in dry DMSO. The anions recognition ability of **HL** was also

evaluated using UV-Vis and ¹H NMR spectroscopic methods.

Keywords: Azo-Azomethine; Bisulfate detection; Colorimetric sensor; Schiff base; NaY zeolite.

* Corresponding author: h-khanmohammadi@araku.ac.ir; Tel: +98-86-34173431; Fax: +98-86-34173406.

1

Download English Version:

https://daneshyari.com/en/article/7668705

Download Persian Version:

https://daneshyari.com/article/7668705

<u>Daneshyari.com</u>