Accepted Manuscript

A highly selective and sensitive fluorescent chemosensor and its application for rapid on-site detection of Al3+

Xiao-li Yue, Zhao-qing Wang, Chao-rui Li, Zheng-yin Yang

PII: S1386-1425(17)31026-0

DOI: https://doi.org/10.1016/j.saa.2017.12.053

Reference: SAA 15698

To appear in: Spectrochimica Acta Part A: Molecular and Biomolecular

Spectroscopy

Revised date: 11 August 2017 Revised date: 8 November 2017

Accepted 16 December 2017

date:

Please cite this article as: Xiao-li Yue, Zhao-qing Wang, Chao-rui Li, Zheng-yin Yang, A highly selective and sensitive fluorescent chemosensor and its application for rapid on-site detection of Al3+. The address for the corresponding author was captured as affiliation for all authors. Please check if appropriate. Saa(2017), https://doi.org/10.1016/j.saa.2017.12.053

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

A highly selective and sensitive fluorescent chemosensor and its application for rapid on-site detection of Al³⁺

Xiao-li Yue, Zhao-qing Wang, Chao-rui Li, Zheng-yin Yang*

College of Chemistry and Chemical Engineering, State Key Laboratory of Applied
Organic Chemistry, Lanzhou University, Lanzhou 730000, P.R. China

**Corresponding author. Tel: +86 931 8913515; Fax: +86 931 812582; e-mail: yangzy@lzu.edu.cn (Z.Y. Yang)

ABSTRACT

In this paper, a simple naphthalene-based derivative (**HL**) has been designed and synthesized as a Al³⁺-selective fluorescent chemosensor based on the PET mechanism. **HL** exhibited high selectivity and sensitivity towards Al³⁺ over other commonly coexisting metal ions in ethanol with a detection limit of 2.72 nM. The 1:1 binding stoichiometry of the complex (**HL**-Al³⁺) was determined from the Job's plot based on fluorescence titrations and the ESI-MS spectrum data. Moreover, the binding site of **HL** with Al³⁺ was assured by the ¹H NMR titration experiment. The binding constant (Ka) of the complex (**HL**-Al³⁺) was calculated to be 5.06 × 10⁴ M⁻¹ according to the Benesi-Hildebrand equation. In addition, the recognizing process of **HL** towards Al³⁺ was chemically reversible by adding Na₂EDTA. Importantly, **HL** could directly and rapidly detect aluminum ion through the filter paper without resorting to additional instrumental analysis.

KEYWORDS: Fluorescent chemosensor; Naphthalene; Aluminum ion;

Download English Version:

https://daneshyari.com/en/article/7669674

Download Persian Version:

https://daneshyari.com/article/7669674

<u>Daneshyari.com</u>