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a b s t r a c t

Because nonlinear responses are oftentimes transient and consist of complex amplitude
and frequency modulations, linearization would inevitably obscure the temporal transition
attributable to the nonlinear terms, thus also making all inherent nonlinear effects incon-
spicuous. It is shown that linearization of a softening Duffing oscillator underestimates the
variation of the frequency response, thereby concealing the underlying evolution from
bifurcation to chaos. In addition, Fourier analysis falls short of capturing the time evolution
of the route-to-chaos and also misinterprets the corresponding response with fictitious fre-
quencies. Instantaneous frequency along with the empirical mode decomposition is
adopted to unravel the multi-components that underlie the bifurcation-to-chaos transi-
tion, while retaining the physical features of each component. Through considering time
and frequency responses simultaneously, a better understanding of the particular Duffing
oscillator is achieved.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

One of the essential objectives in studying a nonlinear system is to obtain the condition that guarantees the existence of
periodic solutions so that their stabilities can be subsequently determined [1]. Steady-state solution is obtained for small but
finite amplitude oscillations around the equilibrium point to estimate the threshold value of the excitation amplitude, sta-
bility region, and number of limit cycles. Linearization is performed under the assumption that if the operation range is in the
immediate proximity of the equilibrium point of the nonlinear system, the response of the linearized model would approx-
imate the nonlinear one with accuracy. However, there are cases that, although giving correct time profile of the nonlinear
response, the inherent components resolved using perturbation methods neither collectively nor individually provide any
physically meaningful representation of the nonlinear system [2]. Applying linearization to investigate nonlinear system
without exercising proper discretions would obscure the underlying nonlinear characteristics and risk misinterpreting the
stability bound.

Fourier-based analyses have been widely accepted as a tool for exploring nonlinear system. Because stationary sinusoids
are employed in representing time-varying signals of inherent nonlinearity, the use of Fourier domain methodologies would
also risk misrepresenting the underlying physics of the nonlinear system being investigated [3]. As most methods employed
to process nonstationary signals are Fourier-based, they also suffer from the shortcomings associated with Fourier transform
[4]. The fact that nonlinear responses including route-to-chaos are intrinsically transient, nonstationary with coupled ampli-
tude–frequency modulation implies that, if a nonlinear response is to be fully characterized, the inherent amplitude mod-
ulation (AM) and frequency modulation (FM) need to be temporally decoupled [4]. The concept of instantaneous

1007-5704/$ - see front matter � 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.cnsns.2012.04.015

⇑ Corresponding author.
E-mail address: ssuh@tamu.edu (C. Steve Suh).

Commun Nonlinear Sci Numer Simulat 17 (2012) 5217–5228

Contents lists available at SciVerse ScienceDirect

Commun Nonlinear Sci Numer Simulat

journal homepage: www.elsevier .com/locate /cnsns

http://dx.doi.org/10.1016/j.cnsns.2012.04.015
mailto:<xml_chg_old>Suhssuh@tamu.edu</xml_chg_old><xml_chg_new>ssuh@tamu.edu</xml_chg_new>
http://dx.doi.org/10.1016/j.cnsns.2012.04.015
http://www.sciencedirect.com/science/journal/10075704
http://www.elsevier.com/locate/cnsns


frequency (IF) is adopted in this study to resolve the dependency of frequency on time. Growing attention is focused on the
Hilbert–Huang transform (HHT), which has been used to investigate the response of quadratic and cubic nonlinearities [5],
Duffing oscillators [6], dynamic systems with slowly-varying amplitudes and phases [7], and fault induced nonlinear rotary
[8]. Because HHT does not use predetermined basis functions and their orthogonality for component extraction, it provides
instantaneous amplitude and frequency of the extracted components for the accurate estimation of system characteristics
and nonlinearities [9]. It is shown that HHT is better appropriate than sinusoidal harmonics for characterizing nonstationary
and transient responses. The interpretation of nonlinearity using IF is found to be both intuitively rigorous and physically
valid.

Various Duffing oscillators have been explored to help elucidate a wide range of physical applications in the real-world. In
Ref. [10] the response of a damped Duffing oscillator with harmonic excitation is analyzed by second-order perturbation
solutions along with Floquet analysis to predict symmetry-breaking and period-doubling bifurcation. Duffing oscillators un-
der nonstationary excitations are also considered by many, where linear and cyclic variations of frequencies and amplitudes
are applied and nonstationary bifurcation is studied. It is shown that nonstationary process is distinct from stationary pro-
cess with different characteristics [11,12]. Nonetheless, these perturbation method based studies on nonlinear systems gen-
erate nonphysical results that are bound to be misinterpreted. The presentation that follows reviews the nonlinearity and
nonstationary bifurcation of a softening Duffing oscillator from the time-frequency perspective established using IF. It is
noted that although IF is considered a viable tool for exploring nonlinear dynamic response, little effort has been made to
study the generation and evolution of bifurcation to ultimate chaotic response, a process that is inherently nonstationary
and transient. A Duffing oscillator and its linearized counterpart are studied first by fast Fourier transform (FFT), short time
Fourier transform (STFT), Gabor transform, and instantaneous frequency (IF). The second part of the paper presents an in-
depth investigation into the route-to-chaos generated by the Duffing oscillator under nonstationary excitation using conven-
tional nonlinear dynamic analysis tools and IF.

2. Instantaneous frequency and intrinsic mode function [3]

The concept of instantaneous frequency was introduced to resolve the time evolution of the spectral response of a non-
stationary signal [14] – a task of which Fourier-based analyses fall short. IF is defined as the time derivative of the phase of a
complex signal. Such a definition was shown to work well with signals of monocomponent. In the following the definition of
instantaneous frequency is briefly reviewed. A time-varying signal r(t) having both amplitude modulated (AM) and fre-
quency modulated (FM) components can be represented as rðtÞ ¼ cðtÞ cosðhðtÞÞ. Its analytic signal is

sðtÞ ¼ wðtÞ þ izðtÞ ¼ wðtÞ þ iHðtÞ ¼ cðtÞ expðihðtÞÞ ð1Þ

where s(t) is the analytic signal, c(t) is the instantaneous amplitude, h(t) is the instantaneous phase, and z(t) is the imaginary
part of s(t). Defining HðtÞ as the Hilbert transform of the time varying signal w(t)

zðtÞ ¼ H½wðtÞ� ¼ p
p

Z 1

�1

wðsÞ
t � s

ds ¼ wðtÞ � ðp=ptÞ ð2Þ

with p being the Cauchy principle value. In theory w(t) and z(t) are out of phase by p/2. The instantaneous amplitude and
phase are defined as cðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2ðtÞ þ z2ðtÞ

p
and h(t) = tan�1(z(t)/w(t)), respectively. By Ville’s definition [14] the derivative

of the instantaneous phase is the instantaneous frequency, thus, f(t) = (1/2p)(dh(t)/dt). Such a definition agrees with our intu-
ition for instantaneous frequency and captures the concept of instantaneity in nature. However, the definition fails when
applied to multicomponent signals for the reason that it adversely averages all the individual IFs associated with each indi-
vidual monocomponent and interprets them as single instantaneous frequency. In addition to falling short on providing a
unified interpretation for signals of multicomponent, the definition also allows infinite and negative frequencies to be in-
duced. The empirical mode decomposition (EMD) scheme proposed by Huang et al. [2] effectively decomposes a time series
into its several inherent physical modes of motion called the Intrinsic Mode Functions (IMF). Each IMF is an orthogonal set of
intrinsic monocomponent from the response and retains the inherent physical features. By definition, every mode has the
same numbers of extrema and zero crossings and the inherent oscillation is symmetric with respect to a local mean defined
by the average of the maximum envelope and minimum envelop without resorting to any time scale. All the inherent IMFs,
C1(t), C2(t), C3(t). . ., and Cm of the dynamic response s(t) can be extracted using a shifting algorithm that resolves a residual
term R(t) that carries no frequency component. It can be shown that the summation of all the IMFs and the residual term
restore back to the response, sðtÞ ¼

Pm
j¼1CjðtÞ þ RðtÞ. From the decomposition process, it is understood that the first mode

(C1) has the smallest time scale, indicating that it includes the highest frequency components. As the decomposition contin-
ues, the frequency components included in IMF become lower. The decomposition is based on the local characteristic time
scale of the data to produce an adaptive basis and does not employ a set of fixed time scales.

Marginal spectrum, defined below in Eq. (3), provides a quantitative measurement of the cumulated weight of all the
instantaneous frequency components over a specific time period,

f01ðxÞ ¼
Z t1

t0
Fðx; tÞdt ð3Þ
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