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a b s t r a c t

In this paper, a simple and accurate formulation of the interaction integral method for the
quadratic tetrahedral finite element is presented. It was found in the course of present
investigation that the auxiliary solutions set by the asymptotic solutions of the crack did
not satisfy the equilibrium in terms of the finite element model consisting of the quadratic
tetrahedral element. Thus, the results of the interaction integral computations contained a
large magnitude of numerical error. To overcome this problem, the authors propose to add
correction terms to the asymptotic solutions and to form new auxiliary solutions. The cor-
rection terms are determined so that the auxiliary solutions satisfy the equilibrium of the
finite element model by performing finite element computations. Some numerical demon-
strations are presented and they show that proposed methodology can give more accurate
stress intensity factor solutions than the case without the correction terms.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Stress intensity factor evaluation is the key process in a structural integrity analysis for a damaged structure with cracks
due to fatigue or stress corrosion cracking (SCC) (see, for example, Atluri et al. [1] and Nakamura et al. [2]). Engineering struc-
tures are generally very complex in their configurations and the cracks often initiate at the locations of stress concentration
as shown in the recent publication of Qian et al. [3] as an example. The stress analyses for such structures are generally car-
ried out by the three-dimensional finite element method (FEM). When performing the FEM analysis in present computer
hardware and software environment, we often use a three-dimensional solid modeler to define the model geometry. Then,
we generate the FEM model using automatic meshing software and perform the three-dimensional FEM computation. How-
ever, the automatic model generation software is not able to generate an analysis model with cracks, in general. Therefore,
when we perform the fracture analysis, the FEM model generation relies on our manual operations and takes a lot of man
hours.

In last two decades, a series of works by many researchers have been presented to reduce the manual labor in the model
generation processes. The meshless methods which are represented by the element-free Galerkin method (EFGM) (see, for
example, [4–6]) totally eliminated the needs for meshing. Moving least square Petrov–Galerkin method (MLPG) was also
proposed by Atluri and Zhu [7,8]. The EFGM and MLPG can perform analyses based only on nodal points. The extended finite
element method (X-FEM) was proposed and applied to crack problems by Belytschko and Black [9] and Sukumar et al. [10].
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In the X-FEM analysis, only the finite element mesh for uncracked structure needs to be provided by the analyst. The crack is
inserted by enriching the interpolation functions by adding functions to represent jumps of the displacements across the
crack faces and the 1=

ffiffiffi
r
p

singular behavior of the stresses at the vicinity of the crack front. Thus, in the X-FEM analysis,
the crack does not need to explicitly be modeled by the finite element mesh. Recently, isogeometric analysis which
integrates CAD (Computer Aided Design) and the finite element method attracted many researchers. The readers are referred
to Cottrell et al. [11]. The isogeometric analysis was combined with the concept of the X-FEM by Ghorashi et al. [12]. In Ghor-
ashi et al. [12], two-dimensional crack propagation analyses were successfully demonstrated. The s-version finite element
method (S-FEM) that superposes a finite element model to represent some local feature such as crack on that representing
the global structure was proposed by Fish [13] and was later applied to two-dimensional crack problems by Okada et al. [14].
S-FEM is a useful tool to perform complex three-dimensional crack propagation analyses as presented by Kamaya et al. [15].
These methodologies totally obviate or drastically reduce the meshing tasks in performing the crack analyses.

Crack propagation analyses by using the conventional finite element method are also found in literature. SchÖllmann
et al. [16] developed a software system called ADPCRACK3D which can perform crack propagation analysis in a complex
three-dimensional structure. The global structure may be modeled by the tetrahedral finite elements but the crack and
its surroundings are discretized by the hexahedral elements using a submodeling technique. FRANC3D/NG [17] was devel-
oped by a group of researchers at Cornell University. FRANC3D/NG can deal with cracks in general three-dimensional struc-
tures by using a combined modeling methodology in which the structure as whole and the vicinity of the crack front are
modeled by the tetrahedral and by the hexahedral elements, respectively. Bremberg and Dhondt [18] also reported the com-
bined modeling methodology. The combined element methodologies are developed so that proven numerical techniques to
evaluate the crack parameters using the hexahedral finite element can be adopted. Lucht [19] presented a combined finite
element/boundary element methodology. The boundary element sub-model is placed at the vicinity of the crack but the
structure as whole is modeled by the tetrahedral finite elements.

On the other hand, the meshing procedures for the tetrahedral elements may be much simpler than those for the
combined approaches. As described in a book chapter of Zienkiewicz et al. [20], the automatic meshing methodologies
based on the advancing front method and the Delaunay triangulation are proven techniques and the processes of finite
element model generation can fully be automated when the tetrahedral elements are adopted. Such methodologies for
general 3D-structures are already in practical and commercial use (see, for example, Technostar Co., Ltd. [21]). For fracture
mechanics analyses, Okada et al. [22,23] and Kaneko et al. [24] presented relatively simple automatic mesh generation
schemes for arbitrary shaped cracks in complex three-dimensional structures. To the authors’ best knowledge, the reasons
why the hexahedral elements are commonly adopted in the fracture mechanics analyses are that (i) the algorithms to

Nomenclature

J3D three-dimensional J-integral
dA area of virtual crack extension
V region of domain integral for the domain integral method
W strain energy density
dij Kronecker’s delta
rij Cartesian components of the stresses
ui Cartesian components of the displacements
xi Cartesian coordinates
qi vector of virtual crack extension at the crack front/vector function for the domain integral method
qð¼ ffiffiffiffiffiffiffiffi

qiqi
p Þ the absolute value of qi

(r, s) local coordinates to determine the value of q. r is the distance from the crack front. s is the coordinate in the
tangent direction of the crack front.

qMAX maximum value of q
rV parameter to define the radius of region of domain integral
ho, h1 parameters to define the width of region of domain integral
KI, KII, KIII mode I, II, II stress intensity factors
E, G and m Young’s modulus, shear modulus and Poisson’s ratio
u0ð2Þi the displacements of auxiliary solutions that are defined as the two-dimensional asymptotic solutions
(r, h) local polar coordinates which are defined at the crack front
DCrack representative size (widths in tangential and normal directions of the crack front) of elements at the crack front
^̂uð2Þi , ^̂rð2Þij the correction terms of the auxiliary solutions for the displacements and stresses

ûð2Þi , r̂ð2Þij the auxiliary solutions for the displacements and stresses with the correction terms
wi the weight functions to perform the FEM analysis to determine the correction terms ^̂uð2Þi
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