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a b s t r a c t

The original lattice hydrodynamic model of traffic flow is extended to single-file pedestrian
movement at middle and high density by considering asymmetric interaction (i.e., attrac-
tive force and repulsive force). A new optimal velocity function is introduced to depict the
complex behaviors of pedestrian movement. The stability condition of this model is
obtained by using the linear stability theory. It is shown that the modified optimal velocity
function has a remarkable influence on the neutral stability curve and the pedestrian phase
transitions. The modified Korteweg–de Vries (mKdV) equation near the critical point is
derived by applying the reductive perturbation method, and its kink–antikink soliton solu-
tion can better describe the stop-and-go phenomenon of pedestrian flow. From the density
profiles, it can be found that the asymmetric interaction is more efficient than the symmet-
ric interaction in suppressing the pedestrian jam. The numerical results are consistent with
the theoretical analysis.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, pedestrian flow has attracted considerable attention in the field of physical science and engineering [1–3].
On the one hand, the complex behaviors of pedestrian can result in many interesting non-linear phenomena and collective
behaviors, such as jamming and clogging, lane formation and oscillations at bottlenecks in counter flow, sudden transitions
from laminar to stop-and-go and ‘‘turbulent’’ flows [4–6]. On the other hand, to gain an insight into these complex behaviors
is of vital importance in the management and optimization of pedestrian facilities, especially to avoid and relieve pedestrian
congestion.

A lot of typical pedestrian flows have been simulated with various models, such as the social force models [7,8],
the hydrodynamic models [9,10], the cellular automaton models [11–13], the lattice gas models [14–16]. However, for
the pedestrian flow at middle and high density, the related research are scarce. How to describe and analyze its dynamic
characteristics qualitatively, especially, stop-and-go phenomenon, is an interesting but still open problem.

Because the pedestrian system is very analogous to the vehicle traffic flow in many respects [17], it is feasible for us to
investigate pedestrian flow using the enlightenment and reference of traffic model. However, the particularity of pedestrians,
i.e., independence, randomness and activity, etc. must be taken fully into account. The lattice hydrodynamic model, being
convenient for analyzing density waves in traffic flow, has been receiving increasing attention from researchers [18–20].
Recently, using the lattice hydrodynamic traffic model, Xue et al. studied the jamming transitions and density waves
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analytically in bidirectional pedestrian traffic [21,22], in which the optimal velocity function, often chosen as a simple hyper-
bolic-tangent function of the headway (or density), depicts the simple behavioral process of a walker, similar to that in traffic
flow. The principal feature of the function is that its first order derivative is symmetric about the point of inflexion on its
curve, which reflects indirectly an unrealistic scenario where the acceleration (attractive effect) and deceleration (repulsive
effect) mechanisms of walkers are same in movement process relative to ‘‘equilibrium state’’. However, real pedestrian flow
shows that a walker’s response is completely asymmetric for making a decision to accelerate or decelerate after he realizes
the change of distance ahead of him. In fact, the response to deceleration is more sensitive for a walker than that to accel-
eration. It is also a very crucial condition for safe walking to avoid collision with others.

As far as we know, in traffic flow, the asymmetry between acceleration and deceleration is considered through distin-
guishing the difference of the sensitivity [23,24]. Nevertheless, differences of sensitivities among pedestrians are generally
small [25] and the above method is not applicable for describing the real pedestrian flow. Therefore, it is very necessary to
explore a new way to solve this open problem. In this paper, through modifying the general optimal velocity function, we
investigate how this asymmetric mechanism influences pedestrian movement.

The paper is organized as follows: A new optimal velocity function is introduced through considering the asymmetric
interaction in a single-file pedestrian movement in Section 2. In Sections 3 and 4, the linear and nonlinear stability analysis
are carried out, respectively. In Section 5, numerical simulations are performed and the intrinsic mechanism of the corre-
sponding phase transition is explored. Finally, the obtained results are summarized.

2. Model

The one-dimensional lattice hydrodynamic model of traffic is extended to the pedestrian flow in a circular route or a sin-
gle-file movement. The pedestrian is described by the following differential-difference equations:

@tqj þ q0ðqjv j � qj�1v j�1Þ ¼ 0 ð1Þ
qjðt þ sÞv jðt þ sÞ ¼ q0Vðqjþ1ðtÞÞ ð2Þ

where the subscript j indicates j site on the one-dimensional lattice; qj(t) and vj(t) represent the density and velocity at site j
at time t, respectively; q0 is the average density; s = 1/a is introduced to denote the delay time with which the walker’s
velocity reaches the optimal velocity as the pedestrian flow is varying; V is called the optimal velocity function. Eliminating
velocity terms in Eqs. (1) and (2), we obtain the density equation

@tqjðt þ sÞ þ q2
0½Vðqjþ1ðtÞÞ � VðqjðtÞÞ� ¼ 0 ð3Þ

Generally, the optimal velocity function has the following properties [18]: It is a monotonically decreasing function with
the increase of density and has an upper bound (i.e., the maximal velocity). Also, it is important that it has one turning point
at least. The optimal velocity function is usually selected as follows [20]:

VðqjðtÞÞ ¼ tanh
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where qc is the critical density and q0 is the average density.
As we pointed out in Section 1, the optimal velocity function (4) could not describe the realistic behavior of walkers due to

the symmetric interaction. Based on the above consideration, we choose the following optimal velocity function which can
describe the ‘‘attractive force’’ and ’’repulsive force’’ between walkers as well as meet the properties mentioned:

VðqjðtÞÞ ¼ V0 þ VF ¼ V0 þ
Aþ cqjðtÞ

b

Bþ aqjðtÞ
b

 !
ð5Þ

where V0 is a constant expressing ‘‘equilibrium velocity’’, which means pedestrians neither accelerate nor decelerate (i.e., no
interaction between pedestrians or the resultant of ‘‘attractive force’’ and ‘‘repulsive force’’ is zero). VF is called as ‘‘force’’, in
which A, B, a, c and b are undetermined parameters which should meet the varying tendency of V(qj) as mentioned above
and ensure the same dimension between V0 and VF. The form of Eq. (5) is introduced by taking into account asymmetric
effect, with Eq. (3), named as model 2. The original model described by Eqs. (4) and (3) is named as model 1, which reflects
the symmetric interaction between walkers. Here, note that jVF(qj)j denotes the magnitude of interaction and the sign of
VF(qj) only means the direction of the interaction forces, i.e., if VF(qj) > 0, the interaction is attractive, and if VF(qj) < 0, the
interaction is repulsive (see Fig. 1).

Based on the above analysis and realistic mathematical and physical consideration, the reasonable parameters in the
modified optimal velocity function are suggested as A = 0.9, B = 1, a = 18, b = 3, c = �19.8 and V0 = 1. In the original optimal
velocity function (4), q0 = qc = 0.4 is selected. The corresponding curves of optimal velocity function V(qj) are shown in Fig. 1.
Compared with the hyperbolic-tangent function, the modified optimal velocity function is not symmetric and the velocity is
not zero at high density, which can describe the real pedestrian better than tanh-function does. Here it should be noted that
when q0 = qc = 0.4 is selected, the optimal velocity (4) is equal to negative for 0.8 < q < 1, but approaching zero. For the
single-file pedestrian movement at the middle and high density under the periodic boundary condition, for safety reasons,
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