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a b s t r a c t

This paper is concerned with the exponential stability analysis for a class of cellular neural
networks with both interval time-varying delays and general activation functions. The
boundedness assumption of the activation function is not required. The limitation on the
derivative of time delay being less than one is relaxed and the lower bound of time-varying
delay is not restricted to be zero. A new Lyapunov–Krasovskii functional involving more
information on the state variables is established to derive a novel exponential stability cri-
terion. The obtained condition shows potential advantages over the existing ones since no
useful item is ignored throughout the estimate of upper bound of the derivative of Lyapu-
nov functional. Finally, three numerical examples are included to illustrate the proposed
design procedures and applications.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

In the past few years, cellular neural networks (CNNs) have been well studied owing to their wide applications in opti-
mization, image processing, fixed point computations and so on [1–3]. The applications of neural networks depend on their
dynamical behavior. Therefore, the dynamical analysis of the networks is necessary for practical design of neural networks.
On the other hand, in the electronic implementation of analog neural networks, time delays occur in the communication and
response of neurons due to the finite switching speed of amplifier. It is known that time delay can influence the stability of a
network by creating oscillatory or unstable phenomena. Therefore, the study of neural networks with consideration of time
delays has received considerable attention for a long time (see e.g., [4–19] and the references therein).

As we know, exponential stability is a more favorite property than asymptotic stability since it gives a faster convergence
rate to the equilibrium point. In [30], Liao et al. pointed out that the property of exponential stability is particularly impor-
tant when the exponential convergence rate is used to determine the speed of neural computations. Consequently, great ef-
forts have been made to exponential stability analysis for neural networks with constant or time-varying delays. For
example, delay-dependent criteria were derived by making use of information on the length of delay in [20–27]. In [28–
32], neural networks with constant delays were considered and some sufficient conditions on the global exponential stability
were obtained.

On the other hand, time varying delays in neuron signals are often inevitable in many engineering applications and hard-
ware implementations of neural networks because of the finite switching speed of amplifiers in electronic neural networks,
or the finite signal propagation time in biological networks. In addition, it is important to achieve global exponential stability
to increase the convergence rate of neural networks tending toward equilibria. Therefore, the global exponential stability of
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neural networks with time-varying delays deserves in-depth investigation. What we concern is how to derive better expo-
nential stability criteria by choosing appropriate Lyapunov–Krasovskii functional and avoiding any procedure which may
bring conservatism when calculating the upper bound of time derivative of Lyapunov–Krasovskii functional. In [30], the glo-
bal exponential stability of a general class of neural networks with time-varying delays was addressed by the approach com-
bining the Lyapunov–Krasovskii functionals with the linear matrix inequality. Wu et al. [21] derived an exponential stability
criterion by considering the relationship between the time-varying delay, its lower and upper bounds. The robust exponen-
tial stability of neural networks with multiple delays was studied in [31]. Their results are then generalized to the interval
neural networks and bidirectional associative memory (BAM) neural networks. By applying the idea of vector Lyapunov
function, Zheng et al. [23] proposed some sufficient conditions, which generalizes some previous criteria. But some negative
terms in the derivative of the Lyapunov functional tend to be ignored, and this may bring conservativeness to some extent.

Motivated by the above discussions, the objective of this paper is to further investigate the exponential stability of the
CNNs with interval time-varying delays and general activation functions. Here we remove the boundedness assumption
of the activation function, relax the limitation on the derivative of time delay being less than one and the lower bound of
time-varying delay being zero. Inspired by the delay center point method in [33], here we construct a more general Lyapu-
nov–Krasovskii functional by utilizing the central point of the lower and upper bounds of delay. Since more information is
involved and no useful item is ignored throughout the estimate of upper bound of the derivative of Lyapunov functional, the
developed conditions are expected to be less conservative than the previous ones. Note that all the conditions are expressed
in terms of LMIs, which can be efficiently solved by the interior point method [34].

The rest of this paper is organized as follows. Section 2 formulates the problem and gives some preliminaries. The main
results are derived in Section 3. In Section 4, three examples are provided to demonstrate the effectiveness of this method.
Finally, some concluding remarks are drawn in Section 5.

2. Problem formulation and preliminaries

Let us consider the following continuous-time CNNs with interval time-varying delays:

_uðtÞ ¼ �AuðtÞ þ BgðuðtÞÞ þWgðuðt � dðtÞÞÞ þ J ð1Þ

where u(t) = [u1(t) u2(t) . . . un(t)]T 2 Rn is the neural state vector. A = diag{a1,a2, . . . ,an} > 0 is the state feedback coefficient
matrix; g(u(t)) = [g1(u1(t)),g2(u2(t)), . . . ,gn(un(t))]T is the activation of neurons. B = (bij)n�n and W = (wij)n�n are the connection
weight matrix and the delayed connection weight matrix, respectively; J = [J1 J2 . . . Jn]T represents the external inputs and
d(t) is the time-varying delay.

Assumption 1. The delay d(t) is time-varying and satisfies:

d1 6 dðtÞ 6 d2; _dðtÞ 6 l

where 0 6 d1 < d2 and l > 0 are known constants.

Assumption 2. The activation function gi(�), (i = 1,2, . . . ,n) satisfies

r�i 6
giðs1Þ � giðs2Þ

s1 � s2
6 rþi ð2Þ

for any s1, s2 2 R, s1 – s2, where r�i and rþi are known constants.
Moreover, we assume that the initial condition of system (1) has the form

uðtÞ ¼ /ðtÞ; t 2 ½�d2;0�

where function /(t) is continuous.
Then, by using the well-known Brouwers fixed-point theorem, one can easily prove that there exists at least one equilib-

rium point for system (1). For the sake of simplicity in the exponential stability analysis of system (1), we make the trans-
formation x(�) = u(�) � u⁄, then we have

_xðtÞ ¼ �AxðtÞ þ Bf ðxðtÞÞ þWf ðxðt � dðtÞÞÞ ð3Þ

where x(t) = [x1(t), . . . ,xn(t)] 2 Rn is the state vector of the transformed system and u⁄ is an equilibrium point of system (1).
Note that fjðxjðtÞÞ ¼ gjðxjðtÞ þ u�j Þ � gjðu�j Þ with fj(0) = 0, (j = 1,2, . . . ,n). From condition (2), fj(�) satisfies the following
condition:

r�j 6
fjðsÞ

s
6 rþj 8s 2 R; f jð0Þ ¼ 0; ðj ¼ 1;2; . . . ;nÞ: ð4Þ

It is obvious that the equilibrium point of system (1) is exponential stable if and only if the zero solution of system (3) is
exponential stable.
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