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1. Introduction

Seeking to understand the role of nonlinear dispersion in the formation of patterns in liquid drops in 1993 Rosenau and
Hyman [1] introduced a family of fully nonlinear K(m,n) equations and also presented solutions of the K(2,2) equation to
illustrate the remarkable behavior of these equations. The K(m,n) equations have the property that for certain m and n their
solitary wave solutions have compact support. That is, they vanish identically outside a finite core region. These properties
have a wide application in the fields of Physics and Mathematics, such as Nonlinear Optics, Geophysics, Fluid Dynamics and
others. Later, this equation was studied by various scientists worldwide [2-14].

In this paper we construct periodic wave solutions for the following family of nonlinear partial differential equations:

ou N 82k+1um

8’: 2 WZO, N>1,m?é1,a]<5é0. (1])

Eq. (1.1)is of order 2N + 1 and depends on N + 2 parameters denoted by oy, . . ., oy, m. This family contains a number of well-
known generalizations of partial differential equations which were considered before [15-29].

This paper is organized as follows. In Section 2 we describe a method which enables one to construct periodic wave solu-
tions for the concerned family of nonlinear partial differential equations. In Sections 3-6 we give several specific examples
for some meanings of N.

2. Method applied

Applying traveling wave variable:

ux,t) =y(2), z=x-Cot, (2.1)
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to Eq. (1.1) and integrating the results yield the following Nth-order equation:

Zakd”‘ ~Gy=0 N>1m#1, 070 (2.2)
k=
The constant of integration is set to be zero. Substituting y(z) = F(z)’ into:

dZN

deN -Gy =0,

we have p = 2% Note that Eq. (2.2) is an autonomous equation, and we can substitute z to (z — zp). We will take this fact into
account in final solution, but we omit this substitution in our calculations. We search solutions of Eq. (2.2) in the form:

¥(2) = (Aw)™1 costT (Bu(z - 20)). (2.3)

There is a remarkable property of a function cos(Byz). First of all we have to show expansion terms of Eq. (2.2).
In the case k=1 we have the following expression:

2 2 2
d cos_m1(Blz) = ,M COS_ml(BpZ) er
m— 1) (m-1)

In the case k =2 we obtain:

d* (4mB,)*

571(B12). 24)

4 3 2 m+
L cos%(Bzz) cos? 1(322) 16mB;(15m° + 11m* +5m + 1) cos Z(mfl”(Bzz)
m—1)* (m—1)*
8mB4(3m-i(-1)(rrll)+ 3)(m+1) cos71(By2). 25)
In the case k=3 we get:
6 6 6 2 2 m+
a cosi (Byz) = — (6mBs) cosi (Bs2) + 96mB;(5m + 1)(7m* + m+ 1)(19m* + 7m + 1) gy (332)
dz° (m-1)° (m—1)°
144m36(2m +1)(5m+1)(m+1)(14m? + 8m +5)  amy
o1y cos m-1 (Bs3z)
6
72mB S (5m + 1)(m(+ 1)(qn)+ 5(m+2)(m+1) COSLl(Bgz). 2.6)
In the general case k = N derivative takes the form:
d2N _m 2NmB m 2Nm BZNMZN 2( Nm m+l)
—y cosi1(Byz) = (1) ﬁ cosmt(Byz) + (—1)N'! w cos (Bnz)
BY'M3N m-ams B'M3N m-3ms3)
(1) P cos™ B+ (1) Py o™ B
BN 2N S BN
o= ﬁ cos™ T (Byz) + W cosi1(Byz), 2.7)

where M3", ... ,MZ" are polynomials of 2N power.
Substituting Eq. (2.7) into Eq. (2.2) we obtain the expression:

(2NmBy)? (2NmBy)* § (2NmBy)™" 2nm
An| oo — oy + Oy — -+ (=1) ———5—oy | cosm-1(Byz
”(0 m-1% " (m-1)* (1" (m—1)™ " (Bn2)
2 1 g2 4 8 14 2N 2N
4 n 12 6 n 16 2N 2N
N1 p p2(N-1) BzNMzN . - BZNMZN
+ Ay <Waw —ﬁm cos T Byz) + WuNAN o | cos?i(Byz) = 0. (2.8)

Equating coefficients at powers of cos(Byz) to zero yields an algebraic system. Solving this system we obtain the values of
parameters Ay, By and correlations on the coefficients «y,. .., .
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