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In this study, laser induced breakdown spectroscopy (LIBS) with chemometrics was used for classification and
identification of alloys, with a particular focus on the issue of the model robustness. A supervised classification
model, Soft Independent Modeling of Class Analogy (SIMCA) was calculated with calibration spectra of 13 repre-
sentative materials. These measurements were reproduced, with the same samples and using the same LIBS in-
strument, on two different dates (seven and eight months after the calibration measurements): during this
period, instrumental variations occurred and the robustness of sample classification was assessed by the predic-
tion error rate. Then, the optimization of SIMCA model parameters, including spectral preprocessing and wave-
length selection,was performed using a full factorial experimental design, and a prediction error rate of 0%with a
robustness of 100% was achieved for this period extending until eight months after the model calibration. The
studywas completed two and a half years later by a test of the robustness of the previously optimizedmodel, car-
ried outwith an additional series ofmeasurements on test sampleswith the same LIBS instrument. The predictive
ability of the model on spectra acquired more than two years after validation remained good.
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1. Introduction

Laser induced breakdown spectroscopy (LIBS) is a fully optical,
multi-elementary and fast analytical technique, requiring no or
little sample preparation. These features make the LIBS technique par-
ticularly suited for portable, in situ or online measurements, and have
been applied for process control in industry [1,2,3], geological and envi-
ronmental measurements [4] and classification and identification of
materials [5]. Multivariate data processing is often used in those appli-
cations in order to overcome fluctuations of the LIBS signal in a weakly
controlled environment. Hence, Soft Independent Modeling of Class
Analogy (SIMCA) [5,6], Partial Least Squares Discriminant Analysis
(PLS-DA) [5,6,7], Artificial Neural Network [8,9,10], Support Vector
Machine [11,12] or Independent Component Analysis [13] have been
tested by several authors for that purpose.

However, in the field of in situ or online analysis, the measurement
robustness is a crucial question. Indeed, analytical instruments are de-
signed to be continuously used over a long period,with nohuman inter-
vention for maintenance, recalibration, etc. Therefore, when using a
chemometric model to measure a property, its predictability has to be
assessed over a representative period of time. Surprisingly, most papers
dealing with chemometric models applied to LIBS data do not address

this issue. Instead, it is a common practice to perform a single set of ex-
periments, and to split in two parts the dataset obtained under the same
experimental conditions. The first part is used to calibrate the model,
and the second one to validate it. In this case, the model efficiency
with data acquired over a longer timescale cannot be assessed.

Infrared spectroscopy is the field of analytical spectroscopy in which
most of the robustness studies have been made. Zeaiter et al. have
reviewed robustness studies for on-line monitoring by NIR spectrosco-
py in industrial applications [14,15]. The different definitions of robust-
ness found in the literature and the different ways to assess the
robustness are reported in [14]. The definitions used in the literature
may be shared into two main categories [16,17]. The first one deals
with transferability problems and is related to the transfer of the meth-
od between laboratories, operators or instruments. In the second one,
robustness is related to the influence of environmental and instrumen-
tal changes on the prediction performances of a multivariate model.
Severalmethods have been employed to improve the prediction perfor-
mances of a model [15]: spectral preprocessing methods (different
spectral normalizationmethods, smoothing and differentiation) and re-
duction of the data dimensions (selection of informative variables
by statistical methods [18] or by wavelength selection [19]). Statistical
treatments have also been tested to improve the on-line robustness
[20].

In LIBS, the issue of the robustness of predictions based onmultivar-
iate analysis was addressed in only a few studies [5,12,10]. Yet in [5,12],
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robustness refers to the model ability to cope with unknown samples,
i.e. not included in the learning set of spectra. In [10], the authors deal
with the problem of assessing the robustness of an Artificial Neural Net-
work approach against variations of the laser energy (on simulated
spectra). In the present work, we adopt the definition of Ref. [14]: “the
sensitivity of the model's predictions to changes in external factors,
such as variations in environmental, instrumental, and sample condi-
tions, under which the spectra were measured during the calibration
phase”. We focused our study on the sensitivity to changes in instru-
mental conditions over time. The aim of our study was the assessment
and the optimization of the robustness when the experimental condi-
tions undergo variations due to the aging of the LIBS device (we had
no prior knowledge of the phenomena involved in the aging of our sys-
tem). For that purpose, classification of alloyswas used as an example to
test our approach. A SIMCA model was built with calibration samples
and predictionsweremadewith the same samples and the same instru-
ment after a period of 7 to 8months of instrumental aging. The selection
of spectral data, the model parameters and the spectral preprocessing
were optimized using a full factorial design of experiments in order to
maximize the model robustness. After optimization of the model, a
100% rate of correct classificationwas achieved for spectra obtained sev-
eral months after the calibration phase. The study was completed by a
test of robustness over a longer timescale. Two and a half years later
an additional series of test measurements was performed, with the
same LIBS instrument, on three test samples and the prediction perfor-
mances of the previously optimized model were evaluated for these
later experiments.

2. Materials and methods

2.1. Experimental setup

A commercial instrument (IVEA SAS Mobilibs) was used for LIBS
measurements. The laser was a quadrupled Nd:YAG laser (Quantel
Brio) emitting at 266 nm pulses of duration 5 ns (FWHM) at 20 Hz
repetition rate. On the target surface, the energy was about 6 mJ per
pulse and the 1/e2 spot diameter is 50 μm: the incident irradiance was
about 60 GW/cm2. Plasma light was collected with an achromatic
telescope and injected into a fused silica optical fiber of 200 μm
diameter connected to the spectrometer. An echelle spectrometer is
used (ESA3000, LLA Instruments). The spectral bandwidth of the spec-
trometer extends from 200 to 780 nm with a resolving power גΔ/ג of
about 10,000 (each spectral line corresponds to about ten points of
the spectrum). The spectrometer is equipped with an intensified CCD
camera (KAF 1001, Kodak). Plasma light is detected within a temporal
gate whose delay (with respect to the laser pulse) and width are
controlled.

LIBS measurements were carried out on 13 alloys (various steels,
inconels and some other alloys). The samples, numbered from 1 to 13,
can be split into several material categories (Table 1). Each alloy
(sample) is considered as a class in the calculation of the models. The
samples present a wide range of concentrations for different elements.
The compositions of some of these elements enable the differentiation
of the samples: Fe, Cr, Ni, Mo, Cu, Al and Ti (the concentrations of Al
and Ti are low). Table 1 gives the available dataset on concentrations
of these elements in the samples. In some cases only concentration
ranges can be indicated and the symbol—marks the unavailable values
of concentration. Samples 1, 2 and 5 are certified reference materials
(Techlab) and correspond to the concentrations with the weakest
uncertainties.

For each of the thirteen samples, 25 spectra were acquired. For
each spectrum 10 laser shots were accumulated on the same loca-
tion of the sample, with a gate delay of 1 μs and a gate width of
1 μs. As an example, Fig. 1 shows a spectrum of a stainless steel
sample.

2.2. Dataset measurement and data treatment

Three sets of experimental data were acquired at three different pe-
riods of timewith the same LIBS instrument and the same spectrometer.
Each dataset was built with measurements on the same 13 samples
(25 spectra per sample). The rows of the matrix of the dataset corre-
spond to the spectra. The variables are the intensities corresponding
to the wavelengths (about 50,000 variables per spectrum) and the ma-
trix contains 325 rows. The measurements were made in September
2011 (dataset 1), in April and May 2012 (dataset 2), and in December
2014 (dataset 3). The wavelength calibration of the spectrometer was
made before each series of measurements. The incident energy on the
sample surface undergoes variations due to a drift of the laser: 6 mJ
for set 1 and 4.5 mJ for set 2. Multivariate analysis was performed
using PLS_Toolbox 7.5 (Eigenvector Research) running under MATLAB
R2014 (MathWorks).

A supervised classification method, SIMCA (Soft Independent
Modeling of Class Analogy) was used. SIMCA calculates an independent
Principal Component Analysis (PCA) model for each class [21]. The pre-
diction of the class of an unknown spectrum is made in the following
way: the distance between the spectrum and the centroid of each PCA
model is calculated and a probability of class membership is calculated
using this distance. The decision criterion for allocating the spectrum
is based on this probability of membership.

To optimize themodel robustness, we proceeded as follows. The ini-
tial model was calculated using randomly selected 80% of spectra of
dataset 1, and its predictive performances were determined using
cross-validation on the 20% remaining spectra. Predictions of dataset 2
were used to evaluate the model robustness. Then a design of experi-
mentswas implemented in order to optimize it, using dataset 2 as a val-
idation set. Four factorswere taken into account and are detailed below:
input variables, preprocessing, distance definition and classification

Table 1
Categories of the samples and concentrations (wt.%) of the discriminating elements.

Category Class Fe Cr Ni Mo Cu Al Ti

Stainless steels 9 ~69 17–19 9–11 – – – –
10 ~66 16–18 11–13 2–2.5 – – –
11 ~68 17–19 10–12 – – – –

Other steels 1 68.6 0.008 18.44 4.88 0.008 0.058 0.41
2 66.5 0.034 18.51 4.97 0.047 0.12 0.69
5 62.9 0.053 18.4 4.71 0.023 0.11 1.47

12 ~63 b0.5 18–19 ~5 b0.5 0.1 1.3–1.6
Inconels 6 6–10 14–17 72 – b0.5 – –

7 8–17 21–25 58–63 – b1 – –
8 40 19–23 30–35 – – 0.3–0.6 0.3–0.6

Monel 13 2.5 – 63 – 28–34 – –
Other alloys 3 33 25 37 2.5 – 0.1 –

4 3 22 55 13 – – –

Fig. 1. Spectrum of a stainless steel.
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