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Artificial neural networks were applied to process data from on-site LIBS analysis of soil samples. A first artificial
neural network allowed retrieving the relative amounts of silicate, calcareous and oresmatrices into soils. As a con-
sequence, each soil samplewas correctly located inside the ternary diagram characterized by these threematrices,
as verified by ICP-AES. Then a series of artificial neural networks were applied to quantify lead into soil samples.
More precisely, two models were designed for classification purpose according to both the type of matrix and
the range of lead concentrations. Then, three quantitative models were locally applied to three data subsets. This
complete approach allowed reaching a relative error of prediction close to 20%, considered as satisfying in the
case of on-site analysis.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Laser-induced breakdown spectroscopy is recognized to have high
potential for geochemical applications since this technique is able
to achieve rapid and multi-elemental on-site analysis with very little
sample preparation [1–5]. In the framework of a collaborative project,
our objective was to quantify heavy metals in soil samples by LIBS anal-
yses. In this paper, a special focus on the analysis of lead is presented.
Generally speaking, when considering a series of samples related to a
single matrix, the common normalization by an internal standard has
been applied to the LIBS data [6–8]. Unfortunately, in the specific case
of soil samples, the LIBS signal is known to be highly dependent of the
matrix [9] and consequently different matrices must be taken into ac-
count. Thus, the basic univariate approach, which consists in building
the so-called calibration curve [10] becomes inappropriate in this
case, even after several attempts of normalization, and advanced data
treatment is required.

Soils are natural samples that are not easy to simply describe. How-
ever, it was considered in this work that the two main matrices of soils
are i) the silicate matrix (SiO2 + Al2O3) and ii) the calcareous matrix
(CaO + MgO). Matrix effects have already been reported in the case
of LIBS analyses of heavy metals in soil samples [9,11] but no major
element was encountered under constant concentration, preventing

the application of normalization by internal standard [12]. To overcome
this problem when dealing with quantitative analysis, two opposite
strategies were proposed: i) the Calibration-Free method [13], not
discussed in this paper, and ii) the use of multivariate approach
known as chemometrics [14,15]. Multivariate analyses have already
been successfully applied to the treatment of LIBS data from soil sam-
ples [16]. More precisely, several multivariate methods such as PCA,
SIMCA, LDA and PLS-DA have been applied to classify soil or geo-
material samples [16–21]. Regarding quantitative LIBS analysis, the
most common technique of chemometrics is the partial least square
(PLS) regression [22,23]. This method has been exploited for soil analy-
sis by Essington et al. [24] who discussed the difficulty to achieve quan-
titative analysis with acceptable relative error of prediction. Moreover,
PLS has been used to quantify both major and trace elements from the
LIBS signals provided by the ChemCam instrument on Mars [25,26]. In
this latter work, in order to obtain better prediction ability, the authors
suggested to eliminate outliers. Moreover, they used independent
component analysis (ICA) to efficiently identify the elements present
in the samples. They finally demonstrated that despite the complexity
of the samples, univariate analysis provided better results than PLS for
trace elements. Then, in order to take into account potential nonlinear-
ities contained into the LIBS spectra, the method of artificial neural
networks – hereafter called ANN – has been efficiently applied [16,27,
28]. More precisely, in a previous work of our group, we have used
ANN to predict the concentrations of major elements such as calcium,
aluminum and iron and also those of trace elements as copper. In this

Spectrochimica Acta Part B 97 (2014) 57–64

⁎ Corresponding author. Tel.: +33 540002870; fax: +33 540006970.
E-mail address: bruno.bousquet@u-bordeaux.fr (B. Bousquet).

http://dx.doi.org/10.1016/j.sab.2014.04.014
0584-8547/© 2014 Elsevier B.V. All rights reserved.

Contents lists available at ScienceDirect

Spectrochimica Acta Part B

j ourna l homepage: www.e lsev ie r .com/ locate /sab

http://crossmark.crossref.org/dialog/?doi=10.1016/j.sab.2014.04.014&domain=pdf
http://dx.doi.org/10.1016/j.sab.2014.04.014
mailto:bruno.bousquet@u-bordeaux.fr
http://dx.doi.org/10.1016/j.sab.2014.04.014
http://www.sciencedirect.com/science/journal/05848547


past work, we highlighted the importance of taking into account
spectral lines from the matrix in addition to those of the analyte as
input data of the ANN in order to improve the prediction ability of the
model [28].

In the presentwork,we focus on the analysis of lead contained in soil
samples from three different geological sites. In this case, the lead
concentrations ranging between 250 and 147 000 ppm induced some
difficulties for a direct treatment. As a consequence, we demonstrate
in this paper that applying a series of ANNmodels for both classification
and quantification purposes allowed to obtain satisfying results.

2. Experimental

The experimental setup, sample preparation and LIBS measure-
ments have been already described in [28] so only a brief description
is given in this section. The LIBS system dedicated to the on-site LIBS
measurements of soils was the MobiLIBS III from IVEA SAS, including a
Nd:YAG laser at 266 nm–20 Hz–5 ns, a focusing system providing
43 GW/cm2 and an Echelle spectrometer coupled to an ICCD camera.
The light emitted by the laser-induced plasma was collected with a
patented achromatic telescope and injected in a 3-meter fused silica
optical fiber of 550 μm diameter. The software AnaLIBS (IVEA SAS)
was used to control the experimental parameters. The full system was
integrated in a van, as a mobile laboratory, in order to allow on-site
LIBS measurements.

Three geological sites located in France were analyzed. The first
one – hereafter called SLM – was characterized by high concentrations
of lead, zinc, barium and calcium. The two other sites – hereafter called
ME and SEB – were characterized by the silicate matrix with much
lower concentrations in ores and in calcium than the ones measured
on the first site. Smart sampling of the sites was achieved in order to
sample the most relevant soils from the ground, avoiding redundancy
and taking advantage of the whole range of concentrations that one
can observe on each site. This smart sampling was achieved by the use
of a portable XRF device (Niton XL3t800, Thermo Scientific). Each soil
sample extracted from the ground was sifted at 2 mmmaximum grain
size and split into two parts, one dedicated to direct LIBS analysis and
the other one to later laboratory ICP-AES analysis in order to provide
the reference values of concentration. It should be pointed out that in
the case of environmental monitoring, sampling is of major importance
and could strongly affect the analytical results. However, thorough con-
siderations about sampling are out of the scope of the present paper and
consequently, the analytical performances given hereafter may be criti-
cized. The best example to illustrate this point is that, for a given soil
sample, two separate amounts of matter were prepared, one for the
LIBS analysis and the other for the ICP-AES analysis. Theywere assumed
to be two perfect replicates but this point was not fully assessed. It
should be emphasized that the values obtained after ICP-AES analysis
were considered as reference values and consequently they had to be
measured by reliable and robust method. The ICP-AES measurements
were performed at BRGM and based on the international standardiza-
tion ISO 14869-2:2002. Briefly, it consists in grinding the soil powder
at 80 μm, then making the soil fusion by sodium peroxide in an oven
at 450 °C and then achieving a dissolution with hydrochloric acid
prior to the ICP-AES measurement. During this lab analysis, 10% of the
sampleswere duplicated for themineralization step in order to evaluate
the analysis.

For LIBS analysis, the soil sampleswerefinally driedwith the use of a
microwave oven since it has been reported that the higher themoisture
level the lower the LIBS signal [5]. Finally the dried soils were prepared
as pressed pellets of 13 mm diameter by applying 8 tons/cm2 during
2 min with a manual press. To optimize to signal-to-noise ratio, it was
decided that each LIBS spectrumwould be the result of 25 laser shots ac-
cumulated at the same point of the sample, with a gate delay of 300 ns
and a gate width of 3 μs. And to reduce the effects of heterogeneity, 25
spectra were acquired for each sample. One single average spectrum

was calculated for each sample and used for quantitative analysis.
Indeed, side experiments allowed verifying that averaging over 25 loca-
tions of the laser spot at the sample surface was sufficient to correctly
take into account the sample's heterogeneity.

Finally, statistics were calculated by running five times each ANN
model. Each calculation starting with different initial random values of
weights, the same input LIBS data generated five slightly different
output values. Thus, the results of the ANN calculations are given by
the average value and the RSD value over five repetitions.

3. Results

3.1. Description of the samples within a ternary diagram

Soil is considered to be amongst themost complex samples and con-
sequently the most difficult to analyze by LIBS due to the high diversity
of matrices. Thus, prior to quantitative analysis, it is highly recommend-
ed to have a strong understanding of the matrix related to the sample
under study. Indeed, this could allow selecting the more efficient
model of calibration.

As a first observation, let us have a look at the data provided by
ICP-AES. From the values of concentrations, three valueswere calculated
in order to highlight the type of matrix, namely to determine if the sam-
ple should be related to a silicate, calcareous or ore matrix. The three
values calculated from ICP-AES data are given hereafter.

For the silicate matrix:

V1 ¼ Si½ � þ Al½ �ð Þ= Si½ � þ Al½ � þ Ca½ � þ Mg½ � þ Ba½ � þ Zn½ � þ Pb½ �ð Þ ð1Þ

For the calcareous matrix:

V2 ¼ Ca½ � þ Mg½ �ð Þ= Si½ � þ Al½ � þ Ca½ � þ Mg½ � þ Ba½ � þ Zn½ � þ Pb½ �ð Þ ð2Þ

For the ore matrix:

V3 ¼ Ba½ � þ Zn½ � þ Pb½ �ð Þ= Si½ � þ Al½ � þ Ca½ � þ Mg½ � þ Ba½ � þ Zn½ � þ Pb½ �ð Þ
ð3Þ

It should be emphasized that Si and Al are frequently strongly corre-
lated in geological samples (more precisely SiO2 and Al2O3), and thus,
they were considered together to calculate the value V1 characterizing
the silicate matrix. In the same way, Ca and Mg both contribute to the
calcareous matrix (more precisely CaO and MgO) and consequently
both were taken into account in the calculation of the value V2 charac-
terizing the calcareous matrix. Finally, Ba, Zn and Pb were selected to
represent the ore matrix (value V3) regarding the range of concentra-
tions provided by the ICP-AES analysis. High values of concentration
for Pb should be related to the natural ore of Galena (PbS) while the
presence of Zn could be related to two types of natural ores, namely
sphalerite (ZnS) and calamine (ZnCO). Finally, high concentrations in
Ba should be associated to a soil rich in barite (BaSO4).

Eqs. (1) to (3) illustrate that the values V1, V2 and V3 were normal-
ized to 1 so that each of them expressed a percentage. Consequently,
any soil sample could be described through these three values. As an ex-
ample, a soil sample characterized by the values V1 = 0.8, V2 = 0.15
and V3= 0.05 should be considered as a soil with a matrix 80% silicate,
15% calcareous and 5% ores.

Soil samples from three geological sites and thus potentially three
different matrices were studied: 27 samples from the site SEB, 30 from
the site ME, and 60 from the site SLM. Finally, Fig. 1 displays these 117
soil samples inside a ternary diagram based on the calculation of the
three values V1, V2 and V3, namely based on the three types of matri-
ces: silicate, calcareous and ore. It should be emphasized that the values
reported in Fig. 1 were retrieved from the values of concentrations
provided by ICP-AES.
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