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a b s t r a c t

By using critical point theory and the method of lower and upper solutions, we obtained
the existence of two unbounded sequences of positive solutions, which are, respectively,
characterized as local minimizers and saddle points of the relative functional, of a singular
dirichlet problem involving the p-Laplacian.
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1. Introduction

The p-Laplacian operator appears in many research areas. For instance, in the study of torsional creep (elastic for p ¼ 2, plastic
as p! þ1), flow through porous media p ¼ 3

2

� �
or glacial sliding p 2 ð1; 4

3�
� �

, see [2]. The existence of multiple solutions of the p-
Laplacian problem was considered by many papers, see for example [1,3,5,6] and the references therein. Most of them treated the
problem under conditions on f which imply some sort of oscillations between a sublinear and a superlinear behaviour.

In [3], a contribution was made for when pFðx;sÞ
jsjp interacts asymptotically with the first eigenvalue. In [5], the existence of at

least one solution was obtained when the nonlinearity pFðx;sÞ
jsjp stays asymptotically between the two first eigenvalues of the p-

Laplacian operator. More recently, in [6] the authors obtained the existence of multiple nontrivial solutions for the case
lims!þ1

pFðx;sÞ
jsjp < k1.

Motivated by above works, in this paper, we consider the following singular problem

ðUpðu0ÞÞ0 þ f ðt;uÞ ¼ 0; t 2 ð0;1Þ;
uð0Þ ¼ 0 ¼ uð1Þ;

(
ð1:1Þ
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where p > 1, UpðsÞ ¼j sjp�2s and f may be singular at u ¼ 0. Combining critical point theory and the method of lower and
upper solutions, we proved that problem (1.1) has two unbounded sequences of positive solutions, which are, respectively,
characterized as local minimizers and saddle points of the relative functional, assuming that

lims!þ1f ðt0; sÞ ¼ þ1 and lim sups!þ1
pFðt; sÞ

sp
>

4p
rðp� 1Þ

� �p

;

with some uniformity in an open neighborhood [ðt0; rÞ � ð0;1Þ, and

lim infs!þ1
pFðt; sÞ

sp
<

pp�1

ðp� 1Þp
;

with some uniformity in (0,1), where Fðt; sÞ ¼
R s

c f ðt; sÞds and c > 0.
This work is organized as follows. In Section 2, some notations and preliminaries are introduced. The existence of infi-

nitely many positive solutions of problem (1.1) is discussed in Section 3. As applications of our results, an example is given
in the last section.

2. Preliminary

Consider the problem

ðUpðu0ÞÞ0 þuðtÞ ¼ 0; t 2 ð0;1Þ;
uð0Þ ¼ 0 ¼ uð1Þ;

(
ð2:1Þ

where u : ½0;1� ! ½0;þ1Þ is continuous. We know that problem (2.1) has a unique positive solution u 2 C½0;1�which can be
expressed in the form

uðtÞ ¼
R t

0 U�1
p

R r
s uðsÞds

� �
ds; 0 6 t 6 r;R 1

t U�1
p

R s
r uðsÞds

� �
ds; r 6 t 6 1;

(
ð2:2Þ

where r satisfies the equationZ t

0
U�1

p

Z t

s
uðsÞds

� �
ds ¼

Z 1

t
U�1

p

Z s

t
uðsÞds

� �
ds; 0 < t < 1:

Then for � > 0, problem

ðUpðu0ÞÞ0 þ 2� ¼ 0; t 2 ð0;1Þ;
uð0Þ ¼ 0 ¼ uð1Þ;

(
ð2:3Þ

has a uniqueness solution y�ðtÞ 2 C½0;1� which can be expressed in the form

y�ðtÞ ¼
R t

0 U�1
p ð�ð1� 2sÞÞds; 0 6 t 6 1

2 ;R 1
t U�1

p ð�ð2s� 1ÞÞds; 1
2 6 t 6 1:

(
ð2:4Þ

Consider the problem

ðUpðu0ÞÞ0 þ gðt; uÞ ¼ 0; t 2 ð0;1Þ;
uð0Þ ¼ 0 ¼ uð1Þ;

(
ð2:5Þ

where g : ½0;1� � R! R is an L1-Carathéodory function. Fixed c > 0, define a C1 functional U : W1;p
0 ð0;1Þ ! R by

UðuÞ ¼
Z 1

0

ju0ðtÞjp

p
� Gðt;uðtÞÞ

� �
dt; ð2:6Þ

where Gðt;uÞ ¼
R u

c gðt; sÞds and W1;p
0 ð0;1Þ is the usual Sobolev space, normed by

jjujj ¼
Z 1

0
ju0ðtÞjpdt

� �1
p

: ð2:7Þ

Definition 2.1. A function a : ½0;1� ! R is a lower solution of (2.5) if a 2 C1½0;1�;Upða0Þ 2 AC½0;1� such that

ðUpða0ðtÞÞÞ0 þ gðt;aðtÞÞP 0; a:e: t 2 ð0;1Þ;
að0Þ 6 0; að1Þ 6 0:
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