
Transmission of solitary pulse in dissipative nonlinear transmission lines

E. Kengne a,b,*, R. Vaillancourt a

a Department of Mathematics and Statistic, University of Ottawa. 585 King Edward Avenue, Ottawa, ON, Canada K1N 6N5
b Department of Mathematics and Computer Science, Faculty of Science, University of Dschang, P.O. Box 4509, Douala, Cameroon

a r t i c l e i n f o

Article history:
Received 15 May 2008
Received in revised form 21 August 2008
Accepted 24 August 2008
Available online 12 September 2008

PACS:
03.75.Gg
03.75.Nt
03.75.Hh
02.60.Cb

Keywords:
Dissipative complex Ginzburg–Landau
equation
Modified Hirota’s method

a b s t r a c t

A class of dissipative complex Ginzburg–Landau (DCGL) equations that govern the wave
propagation in dissipative nonlinear transmission lines is solved exactly by means of the
Hirota bilinear method. Two-soliton solutions of the DCGL equations, from which the
one-soliton solutions are deduced, are obtained in analytical form. The modified Hirota
method imposes some restrictions on the coefficients equations. Namely, the second-order
dispersion must be real. The physical requirement of the solutions imposes complementary
conditions on the combination of the dispersion and nonlinear gain/loss terms of the equa-
tion, as well as on the coefficient of the Kerr nonlinearity. The analytical solutions for one-
solitary pulses are tested in direct simulations.

� 2008 Elsevier B.V. All rights reserved.

1. Introduction

Since the 1970s, various investigators have discovered the existence of solitons in nonlinear transmission lines (NLTLs),
through both mathematical models and physical experiments (see for example Refs. [1–5]). Scott’s classical monograph [6]
was among the first to treat the physics of transmission lines. Scott showed that the Korteweg–deVries (KdV) equation de-
scribes weakly nonlinear waves in a nonlinear LC transmission line containing a finite number of cells which consist of two
elements: a linear inductor in the series branch and a nonlinear capacitor in the shunt branch. If the nonlinearity is moved
from the capacitor parallel to the shunt branch of the line to a capacitor parallel to the series branch, the nonlinear Schrö-
dinger (NLS) equation is obtained instead [7].

Some years ago, the nonlinear propagation of signals in electrical transmission lines has been investigated, theoretically
and experimentally [5,8,9]. It has been shown that the system of equations governing the physics of the considered network
can be reduced either to single or coupled NLS equations or to the Ginzburg–Landau (GL) equations. The single and the cou-
pled NLS equations admit the formation of envelope solitons, which have been observed experimentally [8,9].

More recently, Pelap et al. [10] presented a model for wave propagation on a discrete dissipative electrical transmission
line of Fig. 1 based on the complex Ginzburg–Landau (CGL) equation
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derived in the small amplitude and long wavelength limit using the standard reductive perturbation technique and complex
expansion [11] of the governing nonlinear equations. Here A is a complex amplitude, P ¼ Pr þ iPi and Q ¼ Q r þ iQ i are two
complex constants, and c is a positive constant. Basically, the evolution of the complex wave envelope A is controlled by the
competition of the dispersion ð� PÞ, nonlinearity ð� QÞ, and linear gain c. Physically, Pr measures the wave dispersion, Pi

measures the relative growth rate of disturbances whose spectra are concentrated near the fundamental wavenumber
k;Q r determines how the wave frequency is amplitude modulated, Q i measures the saturation of the unstable wave, and
the positive constant c is the linear gain. The modulational instability of the Stokes waves Aðx; tÞ ¼ A0 exp½ik0x�
iðPrk

2
0 � Qr j A0j2Þt�, where Qi j A0j2 ¼ cþ Pik

2
0, is considered in Ref. [10] and the modulational instability criterion

PrQ r þ PiQ i > 0 has been found.
In this work, we study the transmission of solitary pulses, governed by the GL Eq. (1), propagating in the network of Fig. 1.

The paper is structured as follows. In Section 2, we show how the modified Hirota method is applied to construct the exact
solitary pulse solutions of the DCGL equation. In Section 3, we present some numerical results, and the paper is concluded in
Section 4.

2. Derivation of explicit solitary pulse solutions

In order to prove that Eq. (1) can support envelope solitons, we use the Hirota bilinear technique [12]. Thus, we follow the
definition of Nozaki and Bekki [13,14] and introduce the modified Hirota derivative
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We first note that Eq. (1), under the transformation Aðx; tÞ ¼ wðx; tÞ expðctÞ, takes the form

iwt þ Pwxx þ Q expð2ctÞ j wj2w ¼ 0: ð3Þ

The two-soliton solution of Eq. (3) is given by

wðx; tÞ ¼ u1ðx; tÞ þ u2ðx; tÞ; ð4Þ

where u1ðx; tÞu2ðx; tÞ ¼ 0 corresponds to the single soliton. Inserting Eq. (4) into Eq. (3), we obtain the system
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where ‘‘*” stands for the complex conjugate. To obtain exact solutions of system (5) we adopt the modified Hirota ansatz

u1ðx; tÞ ¼ Gðx; tÞF�aðx; tÞ; u2ðx; tÞ ¼ Hðx; tÞF�aðx; tÞ; ð6Þ

where G and H are two complex functions, F is a real function, and a is, in general, complex. Due to the presence of power �a,
transformation (6) is different from that used in the case of the conventional nonlinear Schrödinger system. This difference
is, as a matter of fact, the main motivation for introducing these modified Hirota derivatives. Expression (6) is deduced from
the truncation of the Puiseux expansions at the lowest level [15]. Using Eqs. (6), (5) is rewritten as a pair of bilinear equations
in terms of the modified Hirota derivative (2),
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a;x þ iPbþ 2ixbPDa;x�F:G ¼ 0; ½iDa;t þ PD2

a;x þ iPbþ 2ixbPDa;x�F:H ¼ 0; ð7Þ
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; D2
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for GH–0. So the left-hand sides of Eq. (8) become equal. Hence the right-hand sides of Eq. (8) should also be equal which is
true only under the bilinear condition

ðH þ GÞðG� � H�Þ ¼ 0; ð9Þ

that is, H ¼ eG with e ¼ �1. In what follows, we consider that e 2 f�1;0;1g, e ¼ 0 corresponding to the single soliton prop-
agating in the network. We then obtain

Fig. 1. Representation of a discrete nonlinear dissipative bi-inductance transmission line.
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