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A B S T R A C T

Exploratory data analysis is crucial for developing and understanding classification models from high-dimen-
sional datasets. We explore the utility of a new unsupervised tree ensemble called uncharted forest for visua-
lizing class associations, sample-sample associations, class heterogeneity, and uninformative classes for prove-
nance studies. The uncharted forest algorithm can be used to partition data using random selections of variables
and metrics based on statistical spread. After each tree is grown, a tally of the samples that arrive at every
terminal node is maintained. Those tallies are stored in single sample association matrix and a likelihood
measure for each sample being partitioned with one another can be made. That matrix may be readily viewed as
a heat map, and the probabilities can be quantified via new metrics that account for class or cluster membership.
We display the advantages and limitations of using this technique by applying it to two classification datasets
and three two provenance study datasets. Two of the metrics presented in this paper are also compared with
widely used metrics from two algorithms that have variance-based clustering mechanisms.

1. Introduction

Chemometric classification methods are often used to discriminate high-
dimensional chemical signatures of unknown samples to determine their
most likely class label [1]. These methods have proven to be valuable for the
fields of archaeometry and forensics where the origin, or provenance, of a
manufactured item is often of interest [1–6] because the chemical data,
especially those obtained from neutron activation analysis (NAA) [7,8], tend
to be highly multivariate. The high dimensionality of data poses a challenge
for understanding sample relationships because it cannot be easily visua-
lized or interpreted directly. While, these methods can succeed at classifying
samples, they do so by including information from the class labels into the
model, and they provide little insight about trends or patterns found in the
data with the absence of labels. Information pertaining to which samples are
most similar to one another between classes, or which are different from the
rest of the samples within a given source class, without the influence of label
discrimination is not available from classification methods.

Exploratory methods are often used to reveal trends and other
patterns hidden in data without the use of class labels [1]. Exploratory
data analysis (EDA) is a form of data analysis which encompasses a
number of visual exploration methods. Success in an EDA study de-
pends on the creativity of the analyst as much as on the technique.
Although there is no strict definition of EDA, it has been stated that,
“Exploratory data analysis isolates patterns and features of the data and
reveals these forcefully to the analyst” [9], and also that “Exploratory
data analysis' is an attitude, a state of flexibility, a willingness to look

for those things that we believe are not there, as well as those we be-
lieve to be there” [10]. The coupling of EDA methods with preproces-
sing and/or feature selection can aid an analyst in the discovery of
patterns, or the lack thereof, in data. The information gained from EDA
may be used with feature selection, preprocessing and modeling
methods to iteratively improve a data analysis pipeline.

The two predominant types of EDA focus on dimension reduction
and clustering. These methods have been extensively used for the EDA
of archaeometric data [3–5,11] because high dimensional data are not
readily visualized. Dimension reduction techniques such as principal
component analysis (PCA), discriminant analysis, or exploratory pro-
jection pursuit are used to change the basis of the data to one based on
lower-dimensional projections [1]. Unfortunately, these methods do
not offer a guarantee that the resulting 2-D or 3-D projections will offer
meaningful information about class relationships or sample-class re-
lationships, due to the presence of class overlap or class heterogeneity
[1]. Unsupervised classification as implemented in clustering algo-
rithms suffers from the opposite problem clustering methods readily
create groupings of high-dimensional data but tend to offer little in-
formation about the cluster assignments themselves. Clustering
methods have been known to incorrectly associate archeological sam-
ples depending on the method used and on the chemistry of the samples
[11]. Information about sample or class relationships may be inferred
by employing many techniques, but the resulting information is often
hidden, and typically key relationships in the data cannot be seen by an
analyst [11].
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This work reports a new approach, which we call the uncharted forest,
to the visualization and measuring of relationships within and between
classes of data. This approach has elements of a clustering algorithm in that
it groups similar samples with one another, but is also similar to dimension
reduction methods in that it outputs a single heat map which can be in-
terpreted to reveal information about the samples. Uncharted forest analysis
uses a partitioning method that is related to the sample partitioning ap-
proach used in decision trees but, it does not use class labels like most tree
methods do [12]. Instead, the uncharted forest analysis explores how
samples relate to one another under the context of univariate variance
partitions. Although the method is unsupervised, we show that when the
results are overlaid with external class labels, the method can be used to
investigate sample relationships as they pertain to class labels. We demon-
strate that this technique can be used as a tool for exploratory data analysis
to visualize class or cluster associations, sample-sample associations, class
heterogeneity, and uninformative classes. The utility of uncharted forest
analysis is demonstrated on two classification datasets and two provenance
datasets. Additionally, two empirical clustering metrics are compared with
two of the metrics obtained by uncharted forest analysis on another pro-
venance dataset.

2. Theory

To motivate the use of an unsupervised tree ensemble, a brief re-
view of supervised trees and bagged tree ensembles as used in classi-
fication is provided here. A complete review of these methods can be
found elsewhere [12,13].

2.1. Supervised classification trees

Before describing the mechanisms by which supervised decision
trees are used to partition data, a survey of the vocabulary common to
these methods is presented. Classification trees are a type of supervised
classifier, which means that the assignment of new data to a class label
requires that each sample the tree was trained on also has a label. The
aim of developing a classification tree is the establishment of a set of
sequential rules that can be applied to label a sample based on its
features. Supervised decision trees are collections of many binary de-
cisions, where each decision is made at one of three locations: roots,
branches, or terminal nodes/leaves. These three locations are displayed
in their hierarchical ordering in Fig. 1. A root is the first decision made
in the tree. Branch nodes indicate later, non-terminal decisions. Term-
inal nodes indicate where a branch has been terminated and where final
decisions that assign class labels are made.

Every sample from the training set is partitioned at a branch or node
based on whether a selected variable for the sample has a value that is
greater than or less than a specified value. The combination of a vari-
able and value that partitions a set of samples is often referred to as a
decision boundary. Decision boundaries are obtained by exhaustively
searching each variable and finding the threshold value which affords
the highest gain [12]. Here, gain is a metric-dependent measure of how
well a decision separates the available samples according to their class
labels. Metrics that can be used to minimize class label impurities at
terminal nodes, such as the Gini impurity, informational entropy, and
classification accuracy are commonly used to train supervised classifi-
cation trees by finding a set of decision boundaries [12].

For example, if the samples available at a branch node are better

separated into their respective classes by application of some decision,
two new branches are made at that node. If not, the partitioning ter-
minates, the node becomes a terminal node, and the decision tree
ceases growth using those samples. In this way, each observation is
sorted from the root of a tree through branches and eventually to
terminal nodes, based on whether creating a new decision boundary
better separates samples by known class labels [12].

One advantage to the use of decision trees is that the classifier that
results can be easily understood by examining the decision boundaries that
partition the data and the relation of these boundaries to class labels.
However, the predictive performance of classification trees on new samples
is generally poor relative to other models because the partitions are sensitive
to noise in the variables [14]. Tree-based classifiers also tend to overfit the
data, and some sort of branch removal, or pruning step, is usually employed
to reduce the complexity of the tree [12].

2.2. Random forest classification

The random forest classifier is a multiclass classification technique
that utilizes the results from an ensemble, or collection of supervised
decision trees [13] to assign class labels. In this technique, a user-spe-
cified number of supervised decision trees is created, each overfit to a
selection of bootstrapped samples and random selections of variables.
Random forests make use of the complexity of many, biased decision
trees to make robust classification assignments by using the average
class designation assigned by every tree to predict overall class mem-
bership for new data. This approach to ensemble model building is
referred to as bootstrap aggregating, or bagging [15]. The average of
many, complex trees tends to perform well in practice [13].

Random forest classification has some distinct advantages relative to
many other classifiers. It is robust to outliers because sample selection at
branches is bootstrapped, and the effect of a few outlying samples does not
affect its cost function significantly [13]. Random forest models are also
robust to noise in variables because many classifiers, each with randomly
selected variables, are used to decide on class memberships. Another no-
table advantage to random forest classification is that there is no require-
ment for linearity in class boundaries. Random forest models, unlike
methods such as linear discriminant analysis or support vector machines,
are not based on the hypothesis that classes are linearly separable [16,17].
Random forest classification also requires relatively few hyperparameters
and works without the need for significant tuning of the classifier on many
kinds of data [14].

2.3. Uncharted forest tree

The concept of unsupervised decision tree modeling is relatively
new to chemometric applications. Only a few approaches using un-
supervised trees have been reported. An approach reported by
Khudanpur et al. is based on an algorithm similar to the one reported
here, but their approach uses the Kullback-Leibler distance to find sets
of unsupervised partitions that are optimal with respect to an in-
formation theoretic measure [18]. Other methods for developing un-
supervised decision trees are based on the use of an assumed class label
for each observation; the trees are trained in a manner that is similar to
that used for training a random forest classifier [19,20].

Our approach to unsupervised decision trees, the uncharted forest
tree algorithm, focuses on intuitive concepts from statistics or machine
learning rather than on information theory, to allow for easy inter-
pretation. The trees can be created without the need for class labels
because the gain function that is optimized in the construction of each
tree relies only on information in the data matrix, not on the labels. This
algorithm does not utilize the usual supervised metrics for optimization
such as the Gini importance or entropy [13]. Instead, the tree hier-
archies used in uncharted forest are constructed from decision bound-
aries that reduce measures of spread in a given variable. The reduction
of spread is common in pattern recognition and chemometrics; it is the

Fig. 1. A block diagram showing the relationships between roots, branches and
terminal nodes via arrows.
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