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A B S T R A C T

The use of a limited set of signatures in nuclear forensics and nuclear safeguards may reduce the discriminating
power for identifying unknown nuclear materials, or for verifying processing at existing facilities. Nuclear
proliferomics is a proposed new field of study that advocates for the acquisition of large databases of nuclear
material properties from a variety of analytical techniques. As demonstrated on a common uranium trioxide
polymorph, α-UO3, in this paper, nuclear proliferomics increases the ability to improve confidence in identifying
the processing history of nuclear materials. Specifically, α-UO3 was investigated from the calcination of un-
washed uranyl peroxide at 350, 400, 450, 500, and 550 °C in air. Scanning electron microscopy (SEM) images
were acquired of the surface morphology, and distinct qualitative differences are presented between unwashed
and washed uranyl peroxide, as well as the calcination products from the unwashed uranyl peroxide at the
investigated temperatures. Differential scanning calorimetry (DSC), UV–Vis spectrophotometry, powder X-ray
diffraction (p-XRD), and thermogravimetric analysis-mass spectrometry (TGA-MS) were used to understand the
source of these morphological differences as a function of calcination temperature. Additionally, the SEM images
were manually segmented using Morphological Analysis for MAterials (MAMA) software to identify quantifiable
differences in morphology for three different surface features present on the unwashed uranyl peroxide calci-
nation products. No single quantifiable signature was sufficient to discern all calcination temperatures with a
high degree of confidence; therefore, advanced statistical analysis was performed to allow the combination of a
number of quantitative signatures, with their associated uncertainties, to allow for complete discernment by
calcination history. Furthermore, machine learning was applied to the acquired SEM images to demonstrate
automated discernment with at least 89% accuracy.

1. Introduction

The ability to rapidly detect and respond to a nuclear event is one of
the greatest mechanisms for deterring the future use of nuclear
weapons [1,2]. Nuclear forensics provides critical analysis of inter-
dicted nuclear materials and materials following detonation of a nu-
clear weapon to help identify signatures indicative of the materials
processing history and origin [3]. On the other hand, nuclear safe-
guards aims to prevent the spread of nuclear weapon materials and
technology through policy and treaty verification. To enable more ef-
fective safeguards and forensics, large databases of nuclear material
properties are needed and Nuclear Proliferomics is the field to acquire
that data. In nuclear forensics and nuclear safeguards, research is
driven by the need to answer specific, hypothesis driven questions. In
contrast, nuclear proliferomics research is conducted to acquire the

maximum amount of data possible. This is the same philosophy prac-
ticed in almost all fields of “omics” [4]. The investigation of these large
and varied datasets can generate additional fields of research, or lead to
the discovery of additional processing signatures.

At the core of almost all “omics” is mass spectrometry [4]. This
technique is also critical to nuclear proliferomics for measuring isotope
ratios of uranium and plutonium [5]. Nonetheless, recent advances in
nuclear investigations have demonstrated the use of mass spectrometry
for identifying many other key signatures including rare earth element
signatures of uranium ores [6], and molecular solvent signatures of
spent nuclear fuel reprocessing [7]. In addition to these mass spectro-
metric signatures, many other signatures can be realized from exploring
the vast analytical techniques available to nuclear scientists including
morphology [8], X-ray fluorescence [9], Vis/NIR reflectance spectro-
scopy [10], and thermal analysis [11,12]. It is a collection of all of these
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signatures which is needed for nuclear proliferomics.
Due to the size and complexity of data collected in all “omics” fields,

machine learning has become a pivotal tool for processing and inter-
preting the data [13–15]. Nonetheless, the application of machine
learning to any nuclear related research is very rare. Porter et al. has
worked to develop segmentation software and interactive machine
learning to interpret morphological features of nuclear materials
[16,17]. In other studies, Jones et al. utilized machine learning to
classify reactor type based on isotopic and elemental measurements
[18], and to repurpose historical industrial quality control records from
uranium ore concentrate (UOC) production to discriminate country of
origin and deposit type [19]. In all of these cases, more data would
greatly improve the application of machine learning. In fact, Luetzen-
kirchen and Mayer reported on the need of nuclear databases to aid in
combatting trafficking of nuclear materials [20]. Nonetheless, extensive
research in nuclear proliferomics is needed to develop these databases.
As the nuclear threat continues to grow, the need for novel signatures is
imperative to continue to deter nuclear material smuggling, and the use
of nuclear weapons [21].

In this present study, a common uranium trioxide polymorph, α-UO3,
was investigated from one of its many synthetic pathways. Cordfunke et al.
previously discovered that unwashed uranyl peroxide results in α-UO3

when calcined at 425 °C in air. This was in contrast to washed uranyl
peroxide resulting in amorphous-UO3 at the same temperature. The two
routes resulting in drastically different morphological forms [22]. While
this particular synthetic route is unlikely to be encountered in a legitimate
commercial operation where the uranium oxide purity is paramount, it
could result from hasty illicit production or insufficient washing during
commercial processing. Furthermore, its complex chemical behavior pre-
sents an interesting case for demonstrating nuclear proliferomics. In this
investigation, microstructural and morphological features of α-UO3 were
quantified using both manual particle segmentation and machine learning.
Quantitative powder X-ray diffractometry (p-XRD), differential scanning
calorimetry (DSC), UV–VIS spectrophotometry, and thermogravimetric
analysis–mass spectrometry (TGA-MS) were used to understand why
morphological features were changing based on the calcination conditions.
To fully illustrate the power of nuclear proliferomics, statistical analysis
was performed on a collection of the analytical data to reveal signatures
not readily visible from a single analysis.

2. Experimental methods

2.1. Materials and synthesis

The synthesis of studtite, (UO2)O2(H2O)2·2H2O, from an initial
feedstock of UO2(NO3)2·6H2O (International Bio-Analytical Industries,
Inc., 99.9%) dissolved in a 1% HNO3 solution to generate a 1.0 M ur-
anyl nitrate solution was detailed previously [8,23]. A significant molar
excess of H2O2 (30% v/v) was added rapidly to uranyl nitrate hex-
ahydrate solution at room temperature. This resulted in a 5.9:1.0 M
ratio of H2O2 to UO2(NO3)2·6H2O. The initial pH of the solution was 1.
The precipitation of studtite was allowed to occur for 30min at room
temperature. The resulting studtite in solution was not drained or wa-
shed of the residual nitrates, before being transferred into an oven at
80 °C for 24 h of drying. The resulting material was lightly ground in an
aluminum oxide mortar and pestle, and p-XRD indicated that the ma-
terial consisted of a mixture of uranyl nitrate trihydrate, metastudtite,
and diuranyl dihydroxide bis(nitrate) tetrahydrate. Utilizing the calci-
nation procedures detailed previously, the unwashed material was
calcined at temperatures of 350, 400, 450, 500, and 550 °C [8,23]. The
calcination products were stored at room temperature in a vacuum
chamber at 20 kPa.

2.2. Powder X-ray diffraction (p-XRD) analysis

Powder XRD patterns of the starting material and the various

calcination products were acquired at room temperature on a Bruker D2
PHASER diffractometer with a 1-D LynxEye detector using Cu Kα X-rays
(λ=1.5418 Å) operating at 30 kV and 10mA. The instrument was
calibrated with a CeO2 NIST SRM 674b standard using structural data
for CeO2 refinement from Kümmerle et al. [24]. A divergence slit of
0.6 mm, an anti-scattering beam knife height of 1mm, and a 3mm
receiving slit were used for the sample data acquisition. The quantita-
tive analysis patterns were collected in the Bragg-Brentano geometry
(Coupled 2θ/θ) with a scan range of 10–90° 2θ, step size increments of
0.02° 2θ, and 2.5 s per step.

Two methods of performing quantitative analysis of the amorphous
phase content were selected: the internal standard method with Rietveld
refinement, and the degree of crystallinity (DOC) method as im-
plemented in the X′Pert Highscore Plus v2.2d software [25]. For quan-
titative analysis sample preparation, samples of ca. 200mg were wet
ground in a high-purity Zirconia mortar and pestle with 2mL of n-pen-
tane (99+%, extra pure, anhydrous, Acros Organics). Following
grinding and room temperature drying, the powder samples were sieved
to< 20 µm with an ASTM E11 certified No. 635 test sieve. For the in-
ternal standard method, the sieved samples were spiked with 20wt%
Cr2O3 (NIST SRM 674b), and well mixed in a 5mL vial on a vortex
mixer. Samples of ca. 50mg were front-loaded on a P-type B-doped si-
licon crystal zero diffraction plate. The sample holder was rotated at
24 rpm during the scans to reduce the impact of preferred orientation
and improve the counting statistics for the acquired patterns. For the
quantification routine, a background was manually fit due to the diffi-
culty in fitting the patterns with high amorphous content. The refined
parameters for all phases were the scale factors, specimen displacement,
lattice parameters, peak shape parameters, overall isotropic displace-
ment parameters, and preferred orientation. The peak shapes were
modeled using a pseudo-Voigt function. Starting models for the struc-
tural refinements for α-UO3 (PDF#01-072-0246), α-U3O8 (PDF#01-073-
6293), Cr2O3 (PDF#01-070-3766), α-UO2(OH)2 (PDF#01-074-4842),
(UO2)4O(OH)6(H2O)5 (PDF#01-070-4765), UO2(NO3)2(H2O)3 (PDF#01-
073-4459), (UO2)2(OH)2(NO3)2(H2O)4 (PDF#01-070-0176), ((UO2)
(H2O)2)(NO3)2(H2O) (PDF#01-072-3827), and (UO2)(NO3)2(H2O)2
(PDF#01-072-2333) were acquired from the ICDD PDF-2 2008 database
[26]. Additionally the starting structural model for (UO2)O2(H2O)2 was
taken from Weck et al. [27].

2.3. Differential scanning calorimetry

Differential scanning calorimetry (DSC) was performed using a
Netzsch DSC 3500 Sirius. Calibration of the temperature and detector
sensitivity was performed at a heating rate of 10 °C/min using the onset
temperature of melting and heat curve peak areas for Adamantane,
Indium, Tin, Bismuth, and Cesium Chloride. The details of the sample
preparation and acquisition parameters were presented previously [8].

2.4. Thermogravimetric analysis-mass spectrometry (TGA-MS)

Thermogravimetric analysis combined with online mass spectro-
metry (TGA-MS) was performed using a TA Instruments SDT Q600
coupled with a Pfeiffer Thermostar GSD 320 T3 that contains a
PrismaPlus mass spectrometer. The mass spectrometer was operated in
the selected ion mode for the following ions: m/z=14 (N+), 16 (O+),
17 (OH+), 18 (H2O+), 30 (NO+), 32 (O2

+), 44 (N2O+), and 46
(NO2

+). Sample preparation and data acquisition details were pre-
sented previously [8]. The TGA was calibrated for temperature using
the melting point onset temperatures for indium (m.p.= 156.60 °C),
zinc (m.p.= 419.53 °C), aluminum (m.p.= 660.32 °C), and silver
(m.p.= 961.78 °C).

2.5. UV–Vis

In order to approximate the water-soluble nitrate concentration in
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