
Towards optimization of crack resistance of composite materials
by adjustment of fiber shapes

M. Prechtel a,⇑, G. Leugering a, P. Steinmann b, M. Stingl a

a Chair of Applied Mathematics II (AM2), Friedrich-Alexander-University Erlangen-Nuremberg, Martensstr. 3, D-91058 Erlangen, Germany
b Chair of Applied Mechanics (LTM), Friedrich-Alexander-University Erlangen-Nuremberg, Egerlandstr. 5, D-91058 Erlangen, Germany

a r t i c l e i n f o

Article history:
Received 2 March 2010
Received in revised form 6 July 2010
Accepted 6 January 2011
Available online 13 January 2011

Keywords:
Crack growth
Cohesive zone modeling
Fiber reinforced material
Shape optimization

a b s t r a c t

We investigate the evolution and propagation of cracks in 2-d elastic domains, which are
subjected to quasi-static loading scenarios. In addition to the classical variational formula-
tion, where the standard potential energy is minimized over the cracked domain under
physical conditions characterizing the behavior of the material close to the crack (e.g.
non-penetration conditions), we include a ‘cohesive traction term’ in the energy expres-
sion. In this way we obtain a mathematically concise set of partial differential equations
with non-linear boundary conditions at the crack interfaces. We perform a finite element
discretization using a combination of standard continuous finite elements and so-called
cohesive elements. During the simulation process cohesive elements are adaptively
inserted at positions where a certain stress bound is exceeded. In our numerical studies
we consider domains consisting of a matrix material with fiber inclusions. Beyond pure
crack path simulation, our ultimate goal is to determine an optimal shape of the fibers
resulting in a crack path that releases for a given load scenario as much energy as possible
without destroying the specimen completely. We develop a corresponding optimization
model and propose a solution algorithm for the same. The article is concluded by numerical
results.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Solving crack problems in fracture mechanics has occupied researchers for many decades in order to be able to quantify
and predict the behavior of cracked structures under service conditions. Theoretical foundations of the classical theory of
brittle fracture in solids are outlined in the works of Griffith [1], Irwin [2] and Barenblatt [3]. Later studies consider the evo-
lution problem of brittle fracture based on material forces acting at the crack tip singularities [4,5] and refer to Eshelby [6]
and Rice [7]. Rigorous mathematical investigations of crack problems like variational approaches (see for example [8,9]) or
methods, where an asymptotic formula is obtained for the total energy increment during quasi-static crack growth [10] have
been developed much later than the first numerical methods to simulate cracking processes. The early finite element studies
like in [11] have extensively used the nodal release procedure to simulate crack growth. The lack of a material length scale
using this method leads to strong dependence of the finite element results on the size of the elements near the crack tip. One
answer is given by meshless methods like the element-free Galerkin method [12] or the extended finite element method
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Nomenclature

A stiffness matrix with penalization term included
Ar matrix with B-spline basis functions
bi basis spline function
Br design curve for fiber boundary r
cijkl stress tensor (i, j, k, l = 1, 2)
C constraint functionals
da infinitesimal length element
dr

i coordinate vector of the ith control point on Cr

dX infinitesimal area element
D matrix composed of all Dr of all Cr, r = 1, . . . ,N
Dr matrix composed of coordinates of all control points associated with Cr

ekl strain tensor (k, l = 1, 2)
E Young’s modulus
f external traction
fcoh nonlinear cohesive traction term in discretized system
F finite matrix whose columns in Rs represent search directions
Fk columns of Fk chosen from F
G energy release rate
H matrix representing the linear mapping from D on pNB

K set of admissible displacements
L feasible region for optimization variables (NOMAD)
mr + 1 number of finite element nodes on fiber boundary Cr

M grid for pattern search
n outer unit normal vector to @X
nr + 1 number of control points
N number of fibers
pr

B finite element nodes lying on fiber boundary Cr

pNB all non-boundary finite element nodes
P potential energy
Pk POLL set
qr

i optimization variable corresponding to control point dr
i

S surface energy
tr

i parameter for B-spline
t cohesive traction
Tr parameter vector for B-spline
T� penalized total energy functional
u displacement field
v test function
V admissible set of test functions
W fracture energy
Cci ith crack part of crack CC

Cemax element side with maximal stress
Cr boundary of fiber r
CC crack
CD Dirichlet boundary
CN Neumann boundary
d crack opening
� penalty parameter
E space of admissible designs for fiber shapes
m unit vector normal to CC

mp Poisson ratio
rc critical stress
rij stress tensor (i, j = 1, 2)
s unit vector tangential to CC

xr domain of fiber r
X computational domain
X0 computational domain without crack
(�)c critical cohesive parameter
(�)cm critical cohesive parameter referring to normal crack opening

M. Prechtel et al. / Engineering Fracture Mechanics 78 (2011) 944–960 945



Download English Version:

https://daneshyari.com/en/article/767696

Download Persian Version:

https://daneshyari.com/article/767696

Daneshyari.com

https://daneshyari.com/en/article/767696
https://daneshyari.com/article/767696
https://daneshyari.com

