
Contents lists available at ScienceDirect

### Talanta

journal homepage: www.elsevier.com/locate/talanta

# Analytical Nanoscience and Nanotechnology: Where we are and where we are heading $\stackrel{\star}{}$



<sup>a</sup> Department of Analytical Chemistry, Marie Curie Building, Campus de Rabanales, University of Córdoba, E-14071 Córdoba, Spain

<sup>b</sup> Regional Institute for Applied Chemistry Research (IRICA), 13004 Ciudad Real, Spain

<sup>c</sup> Castilla-La Mancha Science and Technology Park, 20006 Albacete, Spain

<sup>d</sup> Spanish Royal Academy of Sciences, Valverde 24, E-28071 Madrid, Spain

<sup>e</sup> Department of Analytical Chemistry and Food Technology, University of Castilla-La Mancha Ciudad Real, Spain

#### ARTICLE INFO

Keywords: Nanoscience Nanotechnology Analytical Chemistry Trends Future challenges

#### ABSTRACT

The main aim of this paper is to offer an objective and critical overview of the situation and trends in Analytical Nanoscience and Nanotechnology (AN & N), which is an important break point in the evolution of Analytical Chemistry in the XXI century as they were computers and instruments in the second half of XX century. The first part of this overview is devoted to provide a general approach to AN & N by describing the state of the art of this recent topic, being the importance of it also emphasized. Secondly, particular but very relevant trends in this topic are outlined: the analysis of the nanoworld, the so "third way" in AN & N, the growing importance of bioanalysis, the evaluation of both nanosensors and nanosorbents, the impact of AN & N in bioimaging and in nanotoxicological studies, as well as the crucial importance of reliability of the nanotechnological processes and results for solving real analytical problems in the frame of Social Responsibility (SR) of science and technology. Several reflections are included at the end of this overview written as a bird's eye view, which is not an easy task for experts in AN & N.

#### 1. Introduction

As in many other areas, Nanoscience and Nanotechnology (N & N) have had a deep impact in Analytical Chemistry. The revolutionary and transformer character of them was predicted in 2005 in an editorial of the science journal [1] and confirmed 10 years later. AN & N [2,3] can be defined from different points of view as can be seen in Fig. 1. On the one hand, analytical chemists welcome the challenge and opportunities that N & N offer in this area because of both the powerful nanotools to improve analytical properties of results of analytical processes and analysis of the nanoworld. On the other hand, the basic (Nanoscience) and applied (Nanotechnology) developments and achievements need information from the nanoworld to fulfil their respective objectives and to make founded and timely decisions. The mixed approach shown in Fig. 1 is, in fact, the correct definition of AN & N because both points of view are combined.

The impact of instrumentation (e.g., pH-meters, potentiometric and voltammetric electrodes, photometers, fluorimeters, gas and liquid chromatographs, X-Ray spectrometers among many others) from the middle of XXI century was undeniable because of their great possibilities as regards titrimetries and gravimetries and classical methods of qualitative analysis. The second break point in the evolution of Analytical Science in the transition between XX and XXI centuries was the use of computers to improve the analytical processes by supporting automation, miniaturization, simplification, and implementation of quality systems, as well as the data treatment. Nowadays, research or routine analytical laboratories are unimaginable without the support of computers. This is the situation of many areas (e.g. air transportation or train managements, hospitals, universities, etc.). The irruption in the XXI century of AN & N can also be considered a break point in the global evolution of Analytical Chemistry, taking into account its mixed definition depicted in Fig. 1. A great range of possibilities has been opened up to initiate analytical research lines and to solve a great variety of analytical problems that cannot be solved without the involvement of N&N. It is interesting to point out that at the end of the XX century many analytical chemists described nanotools in papers of reputed journals without mentioning the word "nanotechnology". Such is the case of the use of fullerene as sorbent for preconcentration of traces of

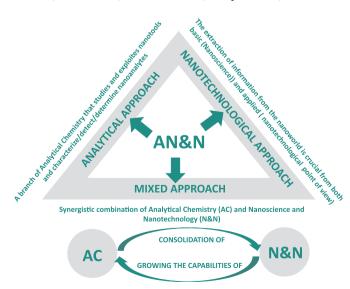
\* Dedicated to Prof. Gary Christian, master, guide and friend of several generations of scientists in general and analytical chemists in particular all over the word, for his devotion to research and teaching Analytical Chemistry. Thanks Gary for your professional example and human values.

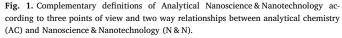
\* Corresponding authors.

http://dx.doi.org/10.1016/j.talanta.2017.09.012 Received 30 June 2017; Received in revised form 31 August 2017; Accepted 2 September 2017 Available online 08 September 2017 0039-9140/ © 2017 Elsevier B.V. All rights reserved.

ELSEVIER




CrossMark


E-mail addresses: qa1vacam@uco.es (M. Valcárcel), angel.rios@uclm.es (Á. Ríos).

| Nomenclature                                             |                                                          | LC                   | liquid chromatography                                    |
|----------------------------------------------------------|----------------------------------------------------------|----------------------|----------------------------------------------------------|
|                                                          |                                                          | LIPS                 | laser induced plasma spectroscopy                        |
| AC                                                       | Analytical Chemistry                                     | MALS                 | multiangle light scattering                              |
| AChE                                                     | acetylcholinesterase                                     | MNPs                 | magnetic nanoparticles                                   |
| Al <sub>2</sub> O <sub>3</sub> NPs alumina nanoparticles |                                                          | MOF                  | metal organic framework                                  |
| AN&N                                                     | Analytical Nanoscience and Nanotechnology                | MWCNT                | multiwalled carbon nanotube                              |
| AF4                                                      | asymmetric field-flow fractionation                      | NC                   | nanocellulose                                            |
| AFM                                                      | atomic force microscopy                                  | NIR                  | near-infrared                                            |
| AgNPs                                                    | silver nanoparticles                                     | N&N                  | Nanoscience and Nanotechnology                           |
| AuNPs                                                    | gold nanoparticles                                       | NP                   | nanoparticle                                             |
| BET                                                      | Brunauer, Emmett and Teller particle analysis            | NTA                  | nanoparticle tracking analysis                           |
| CARS                                                     | coherent anti-Stokes Raman                               | PIXE                 | particle-induced X-ray emission                          |
| CE                                                       | capillary electrophoresis                                | QCM                  | quartz crystal microbalances                             |
| CM                                                       | confocal microscopes                                     | SAED                 | selected area electron diffraction                       |
| CNDs                                                     | carbon nanodots                                          | SEC                  | size exclusion chromatography                            |
| CNTs                                                     | carbon nanotubes                                         | SEM                  | scanning electron microscopes                            |
| CQD                                                      | carbon quantum dot                                       | SERS                 | surface-enhanced Raman scattering                        |
| DCS                                                      | differential centrifugal sedimentation                   | $SiO_2NPs$           | silica nanoparticles                                     |
| DLS                                                      | dynamic light scattering                                 | SLS                  | static light scattering                                  |
| DMA                                                      | dynamic mechanical analysis                              | SQDs                 | semiconductor quantum dots                               |
| DSC                                                      | differential scanning calorimetry                        | spICP-MS             | single particle inductively coupled plasma mass spectro- |
| EDS                                                      | energy-dispersive X ray spectrometry                     |                      | metry                                                    |
| EELS                                                     | electron energy loss spectroscopy                        | SPR                  | surface plasmon resonance                                |
| ELSD                                                     | evaporating light scattering detectors                   | SPME                 | solid-phase microextraction                              |
| ESEM                                                     | environmental scanning electron microscopy               | SR                   | social responsibility                                    |
| FFF                                                      | field-flow fractionation                                 | SWCNTs               | single walled carbon nanotubes                           |
| FIA                                                      | flow injection analysis                                  | TEM                  | transmission electron microscopes                        |
| FL                                                       | fluorescence spectroscopy                                | TGA                  | thermogravimetric analysis                               |
| FTIR                                                     | Fourier transform infrared spectroscopy                  | TiO <sub>2</sub> NPs | titanium dioxide nanoparticles                           |
| GC                                                       | gas chromatography                                       | TERS                 | tip-enhanced Raman scattering                            |
| GO                                                       | graphene oxide                                           | UV                   | ultraviolet                                              |
| GQDs                                                     | graphene quantum dots                                    | 0D                   | zero dimensions                                          |
| HDC                                                      | hydrodynamic chromatography                              | 1D                   | one dimensions                                           |
| ICP-MS                                                   | inductively coupled plasma mass spectrometry.            | 2D                   | two dimensions                                           |
| ICP-OES                                                  | inductively coupled plasma optical emission spectrometry | 3D                   | three dimensions                                         |

metal ions [4,5].

Between XX and XXI centuries there are other more unusual, but also very relevant analytical advances. For example, bioanalysis, sustainable methods of analysis, imaging, quality-Social Responsibility binomial, automation, miniaturization, simplification, instruments





based on new physic-chemical principles, among others. Each specialist in analytical research can introduce his/her keywords in Fig. 2. As can be seen in the Fig. 3A and B, the growing of AN & N articles is impressive during the last few years. But this spectacular increment will diminish in the next few years to achieve a plateau where AN & N will be a consolidated presence in many sub-areas of Analytical Sciences. From a scientific point of view, it will be very difficult to find out real innovative research topics. By now, the prefix "nano" is a key to open many "doors" but in an immediate future, in papers dealing with nanotechnology, this word will slowly disappear from the title, summary,

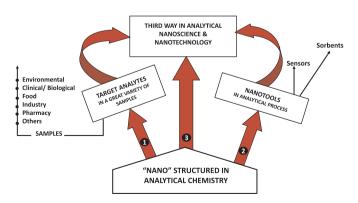



Fig. 2. The three main roles of "nano" structured materials in analytical processes: (1) as analytes in a great variety of samples; (2) as analytical tools; and (3) as tools and analytes in the same analytical process in the so called "third way in AN & N" which is the combination of the two previous ones.

Download English Version:

## https://daneshyari.com/en/article/7677296

Download Persian Version:

https://daneshyari.com/article/7677296

Daneshyari.com