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A B S T R A C T

Independent components analysis (ICA) may be considered as one of the most established blind source se-
paration techniques for the treatment of complex data sets in analytical chemistry. Like other similar methods,
the determination of the optimal number of latent variables, in this case, independent components (ICs), is a
crucial step before any modeling. Therefore, validation methods are required in order to decide about the op-
timal number of ICs to be used in the computation of the final model. In this paper, three new validation methods
are formally presented. The first one, called Random_ICA, is a generalization of the ICA_by_blocks method. Its
specificity resides in the random way of splitting the initial data matrix into two blocks, and then repeating this
procedure several times, giving a broader perspective for the selection of the optimal number of ICs. The second
method, called KMO_ICA_Residuals is based on the computation of the Kaiser-Meyer-Olkin (KMO) index of the
transposed residual matrices obtained after progressive extraction of ICs. The third method, called ICA_corr_y,
helps to select the optimal number of ICs by computing the correlations between calculated proportions and
known physico-chemical information about samples, generally concentrations, or between a source signal
known to be present in the mixture and the signals extracted by ICA. These three methods were tested using
varied simulated and experimental data sets and compared, when necessary, to ICA_by_blocks. Results were
relevant and in line with expected ones, proving the reliability of the three proposed methods.

1. Introduction

Nowadays, following recent progress in analytical chemistry and its
instrumentation, ever more complex data is being produced, requiring
advanced mathematical and statistical tools in order to extract hidden
information. For the purpose of simplifying the interpretation of such
complex data sets, blind source separation (BSS) techniques have
gained considerable attention in the last years, in particular
Independent Components Analysis (ICA), which may be considered as
one of the most reliable techniques in this field. ICA relies on the as-
sumption that most measured signals must be mixtures of independent
signals or what may be called “source signals”. Given a set of such
mixed signals, ICA works by finding a linear transformation of those
mixtures, allowing to recover source signals or independent compo-
nents (ICs), using a criterion that measures statistical independence
between sources. Each of these calculated ICs will be associated to a
different physical process, making it easier to give more meaningful
interpretation to highlighted discriminations [1–3].

In fact, the applicability of ICA was proven to be successful in

several analytical chemistry domains and in the processing of different
types of data. Without being exhaustive, these include the use of ICA as
a pretreatment method to eliminate artefacts from multiway data [4],
for the resolution of overlapping GC-MS signals [5–8], for robust opti-
mization in liquid chromatography [9] and for processing spectroscopic
data such as: visible spectroscopy [10], NIR [11,12] and MIR [13,14],
NMR [15], Raman images [16], 3D-front face fluorescence [17–19],
laser-induced breakdown spectroscopy (LIBS) [20], etc. In addition to
what has been cited as qualitative application of ICA for discrimination,
identification and classification purposes, this chemometric tool has
been applied as a multivariate regression method, providing useful in-
formation for quantitative analysis of components in mixtures [21–26].

One crucial fact about ICA is related to the determination of the
optimal number of ICs which must be carefully selected to perform this
analysis. In fact, extracting too few ICs may result in non-pure signals,
still consisting of mixtures, whereas calculating too many may ex-
cessively decompose source signals and introduce noise. Moreover,
there is no natural order for the extraction of ICs, meaning that a more
informative IC could be extracted after less informative ones [3]. For
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this reason, methods commonly used to decide the number of sig-
nificant components in Principal Components Analysis can rarely be
applied in ICA; one exception being the use of permutation tests [27].

In order to overcome this obstacle, several methods have been
proposed in the literature, but most of them rely on prior knowledge of
the data [28,29]. Other methods were however developed, among
which ICA_by_blocks [30] may be considered as the most commonly
applied one [10,12,15,17,18,25,31,32]. Briefly, this method consists in
splitting the data matrix into two (or more) blocks of approximately
equal number of rows in a way that each block should be representative
of the whole data matrix. For each of these predefined blocks, ICA
models with an increasing number of ICs are computed. ICs corre-
sponding to true source signals should be found in each of the blocks.
Such true ICs are highly correlated while noisy ICs or non-characteristic
signals will have low correlations. The model with the highest number
of highly correlated ICs indicates the optimal number of ICs to be ex-
tracted [3,30].

In this context, the objective of this article is to present a formal
description of three new methods for the determination of the optimal
number of ICs and hence push for further development in this field. The
first method, called Random_ICA, is a generalization of the
ICA_by_blocks method. The second one, called KMO_ICA_Residuals, is
based on the computation of the KMO index and the third, called
ICA_corr_y, is proposed to be used specifically on data corresponding to
quantitative information. Tests were performed on simulated and ex-
perimental data sets and compared, when necessary, to ICA_by_blocks.

2. Theoretical background

2.1. Independent components analysis (ICA)

Given that observed signals are organized into a data matrix X (n,p)
with n measured signals, corresponding to the different analyzed
samples, each containing p data points or variables for which the in-
tensities have been measured, and assuming that these measured sig-
nals are linear mixtures of source signals, the general model of ICA can
be described as:

=X AS (1)

where A is the matrix of coefficients (proportions), specifying the re-
lative contributions of the source signals to each mixture, or the so-
called “mixing matrix”; and S is the matrix of source signals (the in-
dependent components, ICs). In short, ICA aims to determine both A
and S, knowing only X. It attempts to achieve this objective by esti-
mating a demixing matrix W = A−1, so that the source signals (ICs)
may be recovered from X according to the following equation:

=S WX (2)

The mixing matrix A can then be calculated as:

= −A X S SS( )T T 1 (3)

In the present study, the Joint Approximate Diagonalization of
Eigenmatrices (JADE) algorithm was used, which aims to extract in-
dependent sources from signal mixtures by maximizing their non-
Gaussianity [3].

The measured signals are assumed to be combinations of several
independent signals, and so, as a consequence of the Central Limit
Theorem, they should present a "more Gaussian" distribution than the
individual sources. The objective of JADE is to rotate the loadings
vectors obtained by applying a Principal Components Analysis (PCA) to
the complete set of observed signals, X, so as to maximise their non-
Gaussianity. The PCA is applied to the row-centered Xc matrix to obtain
a reduced number of orthogonal loadings vectors of equal variance, Pw.

The fourth-order cumulants of these Pw with themselves (auto-cu-
mulants), as well as the cumulants of all combinations of Pw (cross-
cumulants), are calculated and placed in a fourth order tensor, of

dimensions k × k × k × k (where k is the number of PCA loadings in
Pw, corresponding to the number of ICs to be calculated).

The fourth-order auto-cumulant of a vector x can be defined as its
kurtosis, κ:

=Cum E Ex x x x x x{ , , , } { }–3. { };4
4 2 2 (4)

The fourth-order auto- and cross-cumulants are given by:
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where the 4 vectors vi, vj, vk, and vl are different combinations of the
vectors in the matrix Pw.

If the vectors are independent, their fourth-order cross-cumulant
will be zero and their auto-cumulants maximal. JADE therefore calcu-
lates a rotation matrix to diagonalize the initial cumulants tensor so
that the vectors become statistically independent, to give the source
signals, S. The proportions in the mixing matrix, A, are obtained by
projecting X onto S:

= −A X S S S.. ( )T T 1 (3′)

2.2. Random_ICA

Random_ICA can be considered as a generalization of the
ICA_by_blocks method [30]. As previously mentioned, ICA_by_blocks
starts by splitting the data matrix into a certain number of blocks,
generally two. Moreover, it was clearly stated that care must be taken in
the construction of these blocks so that each block is, as much as pos-
sible, representative of the complete data matrix. Four options were
introduced with the ICA_by_blocks method in order to build these
blocks, the choice of the option to apply being determined by the way
the signals are ordered in the original matrix: Venetian blind (where
regularly spaced samples are attributed to each block, e.g., if two blocks
are to be defined, all samples with an even index are placed in the first
block, and all samples with an odd index are placed in the second
block), successive blocks (the first half of the samples constitutes the
first block, and the second half constitutes the second block), random
repartition of the samples into the two blocks, and predefined groups
(the user chooses, according to his own criteria, which sample goes into
which group). However, in the case of complex and unstructured data
sets, a certain bias may be introduced during the distribution of rows
into the different blocks. Therefore, the Random_ICA method in-
troduced in this paper starts by randomly distributing the rows of the
data matrix X into 2 blocks of approximately equal sizes. As in ICA_-
by_blocks, for each of these predefined blocks, Fmax ICA models are
computed, with from 1 to Fmax ICs. To avoid the possibility of a bias
being introduced by a particular distribution of the rows into the
blocks, the whole procedure is repeated k times resulting in different
sets of blocks, producing a broader perspective for the selection of the
optimal number of ICs.

2.3. KMO_ICA_Residuals

The Kaiser-Meyer-Olkin (KMO) index [33,34] was developed to
check whether the factorial analysis of a data set is pertinent. In fact, if
the original variables are orthogonal, it is useless to perform a Principal
Components Analysis (PCA) of the data.

The KMO index is calculated as follows:

=
∑ ∑
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≠

≠ ≠

r

r a
KMO i j i ij

i j i ij i j i ij

2

2 2
(6)

where rij is the correlation between variables i and j, and the partial
correlation aij is defined as:
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