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Abstract

Stationary selfconsistent solutions of the Vlasov–Maxwell system in a magnetized inhomogeneous plasma (so called
Vlasov equilibria) provide the natural starting point for the investigation of plasma stability and of the nonlinear devel-
opment of plasma instabilities in collisionless or weakly collisional regimes. In view of the different mechanisms that drive
these instabilities, we discuss Vlasov equilibria with both density and temperature gradients.
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1. Introduction

Stationary solutions (equilibria) of the Vlasov–Maxwell system based on Jeans’ theorem [1,2] provide a
convenient starting point for the investigation of the nonlinear dynamics of electromagnetic plasmas in colli-
sionless regimes (see Refs. [3–8]), of stellar systems such as galaxies (with the gravitational potential replacing
the electromagnetic potentials, see Ref. [9] and references therein) and of selfgravitating general relativistic sys-
tems [10]. In particular, isothermal equilibria with a nonuniform density are frequently considered because,
amongst other reasons, they may be expected to be more resilient to the long term dissipative effects of particle
collisions. In addition, they lead to physical models that are relatively simple to solve algebraically, although
such models are often affected by divergences (as, e.g., in isothermal stellar systems) or by unphysical bound-
ary conditions. On the other hand plasma equilibria with nonuniform temperature distributions are of great
interest as temperature gradients are known to affect the dynamics of magnetically confined plasmas, giving
rise to new instabilities [11] or modifying important plasma processes such as magnetic reconnection [12].
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1.1. The Harris pinch

The well known Harris pinch equilibrium describes a purely magnetic (i.e., fully neutral), isothermal one-
dimensional stationary plasma configuration embedded in a magnetic field of the form BðxÞ ¼ ByðxÞey þ Bzez;
with Bz constant, possibly zero. In such a configuration, the particle kinetic energy �j � mjv

2=2 and the z com-
ponent of the canonical momentum pjz ¼ mjvz þ ZjeAz=c are (isolating) integrals of the particle motion. Here
j ¼ e; i denotes the particle species and Zj;mj are the particle charge number and mass. Thus any distribution
function of the form fjðx; vÞ ¼ F jð�j; pjzÞ that satisfies the appropriate positivity and integrability conditions is
a stationary solution of Vlasov’s equation. The set of the Vlasov–Maxwell equations is then closed by calcu-
lating the current density

J zðxÞ ¼ J zðAzðxÞÞ �
X

j

Zje
Z

d3vvzF jð�j; pzÞ
� �

; ð1Þ

along z and by solving Ampère’s equation r2AzðxÞ ¼ �4pJ zðAzðxÞÞ=c; for the unknown vector potential, after
imposing that the particle densities

nj ¼
Z

d3vF j v2; pz

� �
; ð2Þ

be equal, i.e., that the configuration is charge neutral. This allows us to find the spatial dependence of the mag-
netic field selfconsistently. The Harris solution [3] is obtained by choosing two isothermal distribution func-
tions of the form

F jð�j; pjzÞ ¼
n0j

ð2pT j=mjÞ3=2
exp ��j þ u�j pjz � mju�2j =2

� �.
T j

h i
; ð3Þ

where n0j is a reference density and u�j is the stream velocity parameter. The neutrality condition requires that
the combinations jZjjn0j and Zju�j=T j be equal for electron and ions. For the (diamagnetic) current density we
obtain:

J zðAzðxÞÞ ¼
X

j

Zjeu�j n0j exp u�j ZjeAz=c
� �h .

T j

i
: ð4Þ

The distributions (3) can be written as the product of shifted Maxwellians (centered at u�j ) times a common
density distribution. The particle and the current densities have the same space dependence and the sign of the
current density is the same through out the configuration. An additional uniform Maxwellian distribution can
be added without changing the current distribution. By solving Ampère’s equation we obtain:

AzðxÞ ¼ � ln½coshðxÞ�; ByðxÞ ¼ � tanhðxÞ; nðxÞ ¼ 1=cosh2ðxÞ; ð5Þ
where we have normalized the vector potential on 2cT i=ðZieu�i Þ, n on the maximum density and x on
cT i=½Zieu�i ð2pZin0iðT e þ T iÞÞ1=2�.

1.2. The convolution method

The Harris distribution corresponds to uniform temperatures and stream velocities where 1=T j and u�j=T j

could be interpreted as Lagrange multipliers in the minimization of the entropy at constant energy and canon-
ical momentum along z. Physically interesting Vlasov solutions can be found by superimposing distributions
with the same ‘‘temperature’’, but different stream parameters according to a procedure introduced and dis-
cussed in Ref. [5]. This approach is based on defining a ‘‘stream distribution density’’ NjðujÞ depending on a
‘‘stream variable’’ uj and gives

F jð�j; pjzÞ ¼
Z

duj
NjðujÞ

ð2pT j=mjÞ3=2
exp ��j þ ujpjz � mju2

j=2
� �.

T j

h i
; ð6Þ

which reduces to Eq. (3) for NjðujÞ ¼ dðuj � u�j Þn0j. Charge neutrality requires that the electron and ion
stream distributions are related by T eNeðueÞ ¼ T iNi½ZeT iui=ðZiT eÞ�. Choosing for example NjðujÞ ¼
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