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a b s t r a c t

Recently, imaging and machine vision are gaining attention to food stakeholders since these are con-
sidered to be the emerging tools for food safety and quality assessment throughout the whole food chain.
Herein, multispectral imaging, a surface chemistry sensor type, has been evaluated in terms of mon-
itoring aerobically packaged beef filet spoilage at different storage temperatures (2, 8, and 15 °C) and
storage time. Spectral data acquired from the surface of meat samples (with/without background flora;
þBF/–BF respectively) along with microbiological analysis. Qualitative analysis was employed for the
discrimination of meat samples in two microbiological quality classes based on the values of total viable
counts (TVCo2log10 CFU/g and TVC42log10 CFU/g). Furthermore, a Support Vector Regression model
was developed to provide quantitative estimations of microbial counts during storage. Results exhibit
good performance with overall correct classification rate for the two quality classes ranging from 89.2% to
80.8% for model validation. The calculated regression results to an R-square of 0.98.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Spoilage of foods determined as the result of the biochemical
activity of microbial populations [1,2] is driven mainly by two
categories of factors: (i) intrinsic (e.g. water activity, acidity, redox
potential, available nutrients and natural antimicrobial sub-
stances) and (ii) extrinsic (storage conditions of temperature, hu-
midity, atmosphere composition and packaging) [2,3]. This in-
herent complexity of determining the food deterioration is also
apparent in food quality assessment where the acquisition of re-
liable information through non-destructive methods is a major
challenge of the food industry [4–6]. To address this, development
and application of effective quality and safety assurance systems
based on controlling, monitoring, and recording the critical para-
meters throughout the food chain need to be employed by the
food industry. This goal cannot be reached using conventional
microbiology or molecular based techniques [7] since both are
time-consuming, destructive, limited to the number of samples to
be analyzed and require highly trained personnel [2,8]. So, it is
obvious that rapid non-destructive techniques for automatic
monitoring of food processes in all stages of the food chain is a
must. The potential of using non-destructive methods (e.g.

vibrational spectroscopy and surface chemistry sensors) to over-
come the limitations of conventional food microbiology gains
more and more attention [9–13].

Multi- and hyper-spectral imaging emerge as highly promising
techniques since they give insight to the chemical composition of
the surface of the samples. Up to date, all the available methods for
contamination assessment based on multi-/hyper-spectral ima-
ging data follow the same, more or less, roadmap for analysis.
Specifically, they make use of the average intensities of the sample
at specific wavelengths along with the corresponding standard
deviations. Then those average values are used as inputs for a
classification and/or prediction system, in order to train a re-
presentative model for predicting the total viable counts (TVC) of
the sample [11–17]. Popular methods for prediction/classification
used are partial least square regression (PLSR) [18], support vector
machine regression (SVR) [18], artificial neural networks [18], and
principal components analysis (PCA) [18]. Although the afore-
mentioned general approach exhibits good results in terms of
prediction, the use of average values as predictor factors cannot be
considered as a reliable/robust indicator. This argument is sup-
ported by the fact that in the corresponding studies, the samples
are all under the same conditions, e.g. same temperature. Thus, the
prediction outcome for samples originated from different condi-
tions is poor.

Herein, a novel methodology is presented that exploits the
multi-spectral technology. Instead of using the mean reflectance
values of the samples, (i.e. averaging the values of contaminated
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and non-contaminated sites present on a sample) the spectra re-
lated to each contamination-wise condition are identified. Next,
the pixel-wise spectra are classified and categorized according to
those “signature” spectra, previously identified. To do so, un-
supervised clustering techniques are employed and applied in two
cascade steps. At the first step, the data are reduced by the ap-
plication of a pre-clustering approach. Then, the least number of
spectra, which constitutes the condition related characteristic
spectra, are automatically determined, i.e. each spectrum reflects
to either contaminated or non-contaminated sites. The character-
istic spectra are used as prediction factors since they are con-
sidered much more robust than the corresponding average values.
The justification for this is that they express the central spectra
that characterize the contamination state (either contaminated or
not) of sites on the surface of the samples. The evaluation per-
formed, exhibits that the proposed framework leads to reliable
results when compared to the conventional microbiology techni-
que's measured contamination abundancy. More importantly, the
performance is consistent and robust when different storage
conditions are applied on the samples (temperatures at 2 °C, 8 °C,
& 15 °C).

2. Materials and methods

2.1. Materials

For this study, a block of de-boned beef was obtained from a
local processing plant, transported under refrigeration to the la-
boratory within 1 h and divided to two separate block. The first
meat-block was treated according to [19]. Specifically, it was
sprayed with 100% alcohol and ignited with a gas burner so as to
reduce/eliminate the initial microbial load. Then, it was placed
onto a laminar cabinet, where the external burnt surface tissue
was removed aseptically and the sterile tissue below was excised
and cut into beef fillets of 20–30 g. Samples were placed into
sterile Petri dishes in order to avoid environmental contamination.
Those samples are considered to be without Background Flora
(�BF). As far as the second meat-block concerns, the one with the
Background Flora (þBF), it was also cut into smaller fillets of about
20–30 g, placed into Petri dishes and stored under the same sto-
rage conditions. In conclusion, two groups of samples have been
created, one that has no background flora (no contamination was
evident, e.g. no visible colonies on TGY medium was present) and
one that has background flora (i.e. number of bacteria colonies
progressively increased during storage). In the case of the samples
with background flora, the bacteria present are mixed populations
of mesophilic and psychrophilic bacteria (i.e. the indigenous flora).
This microbial association comprise of different microorganisms,
as consequence of the effect of applied temperatures [2].

2.2. Experimental design for samples collection

Meat samples (�BF and þBF) were stored in 2, 8, and 15 °C
using high-precision (70.5 °C) incubation chambers (MIR-153,
Sanyo Electric Co., Osaka, Japan). At appropriate time intervals, [0,
6, 10, 20, 26, 32, 38, 44, 47, 50, 53 and 60 h] for 15 °C, [20, 26, 38,
44, 50, 56, 62, 68, 74, 80, 83, 86, 88, 94, 97, 100 and 103 h] for 8 °C,
and [26, 32, 50, 62, 74, 80, 86, 95, 98, 101, 104, 107, 110, 118, 124,
128, 132, 136, 140, 151, 157,171, 195 and 222 h] for 2 °C, samples
were analyzed microbiologically while images from the multi-
spectral imaging instrument were acquired at the same time
points. In total 164 beef fillets samples (74 �BF and 90 þBF) were
obtained and represent time-series and coupled storage experi-
ments. Hereafter, the datasets with no background flora (�BF) will
be referred as SD2, SD8, SD15 (the number indicates the storage

temperature) and with background flora (þBF) as D2, D8, and D15.

2.3. Microbiological analysis

Samples (1 g) from meat were weighed aseptically, added to
sterile quarter-strength Ringer solution (9 ml), and homogenized
in a stomacher (Lab Blender 400, Seward Medical, London, UK) for
60 s at room temperature. For the enumeration of Total Viable
Count (TVC), duplicate 0.1-ml samples of the appropriate decimal
dilutions in quarter-strength Ringer solution were spread onto
Tryptic Glucose Yeast Agar (Biolife) by incubating aerobically at
30 °C for 48–72 h.

3. Methods

3.1. Multispectral image acquisition and image analysis

The proposed workflow is described in detail below while its
flow diagram is shown in Fig. 1. For multispectral image acquisi-
tion the VideoMeterLab imaging system was used [20] (Fig. 1a–c).
VideoMeterLab captures surface reflection images of samples at 18
different wavelengths ranging from 405 to 970 nm, creating a data
hypercube for each sample. The acquisition system, records the
surface reflections with a standard monochrome charged coupled
device chip (CCD). The sample is placed inside a sphere, called
Ulbricht sphere, which has a matte white coating so as to ensure a
diffused and spatially homogenous illumination of the sample. At
the rim of the sphere, light emitting diodes (LEDs) with narrow-
band spectral radiation distribution are positioned side by side.
During data acquisition, the diodes are strobing successively, re-
sulting in a monochrome image with 32-bit floating point preci-
sion for each wavelength. Finally, a data cube of spatial and
spectral data for each sample of size m�n�18 (where m�n is
the image size in pixels) is acquired.

The acquired images are then processed in order to exclude any
background/environment areas (such as Perti dish, fat, and con-
nective tissue areas), non-relevant to the region of interest, i.e.
meat sample. This is done by an automated and unbiased image
processing pipeline that has been developed within our group
previously [21]. In brief, it is based on unsupervised machine
learning methods (e.g. Gaussian Mixture Models [22]) and a novel
unsupervised scheme of spectral band selection for segmentation
process optimization. The aforementioned image analysis appli-
cation (Fig. 1d) results to region of interest extraction (ROI), pixel-
wise spectral information (i.e. spectrum of each sample pixel at
the 18 image acquisition wavelengths) and other collectible sta-
tistics of the sample (e.g. spectral average intensity, standard de-
viation etc.).

3.2. Data analysis

At this point the region of interest and the individual pixel-wise
spectra along the wavelengths (Fig. 1e) are extracted. Each spec-
trum is a vector of the reflectance values over the 18 wavelengths,
i.e. an 18 dimensional vector. Typically, for each sample image, we
usually get more than 300,000 spectra (size of the sample area in
pixels). This constitutes an enormous data size. In order to reduce
the complexity and the size of the data, a pre-clustering step is
applied, based on the well-known k-means algorithm [18]. Here
the number of clusters is set to 20 so as not to oppose a strict
limitation and lose informative clusters (Fig. 1f). The choice of 20
clusters is justified by the fact that we do not expect to have more
than 20 different areas on a sample in terms of surface coloration.
Collaterally, 100 instead of 20 clusters were used, leading to the
same results in terms of the “natural” clusters determination. At
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