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a b s t r a c t

This study focuses on the prediction of the anisotropic effective elastic moduli of a solid
containing microcracks with an arbitrary degree of alignment by using the generalized
self-consistent method (GSCM). The effective elastic moduli pertaining to anti-plane shear
deformation are discussed in detail. The undamaged solid can be isotropic as well as aniso-
tropic. When the undamaged solid is isotropic, the GSCM can be realized exactly. When the
undamaged solid is anisotropic it is difficult to provide an analytical solution for the crack
opening displacement to be used in the GSCM, thus an approximation of the GSCM is pur-
sued in this case. The explicit expressions of coupled nonlinear equations for the unknown
effective moduli are obtained. The coupled nonlinear equations are easily solved through
iteration.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Microcracks are common defects in solids and multiple microcracks usually coexist in a single solid. The prediction of the
effective elastic properties of a microcracked solid is technically challenging and can find many practical applications.
The major methods developed so far to predict the effective elastic moduli of a microcracked solid include the following:
the self-consistent method (SCM) in which a crack is embedded directly into an effective medium [1]; the generalized
self-consistent method (GSCM) in which a crack is surrounded by an undamaged matrix region, and then embedded in
the effective medium [2,3]; the Mori-Tanaka method (MTM) [4]; the differential scheme method (DS) [5–7]; and the mod-
ified differential scheme (MDS) [8]. Recently the GSCM in conjunction with a finite element method (FEM) was developed to
take into account crack face contact and friction [9]. Most recently the representative unit cell approach was proposed by
Kushch et al. [10] to calculate effective elastic properties of a microcracked solid. Here it shall be noted that the effect of crack
orientation statistics on the anisotropic effective moduli of a microcracked solid was in fact first investigated by Santare et al.
[3] through the introduction of the crack orientation distribution function /(h) which was later adopted in [11] within the
framework of the SCM to study the problem of cracks with an arbitrarily degree of alignment in a material that is originally
anisotropic before the damage occurs.

In this research we analytically study the anisotropic effective elastic moduli of a solid containing microcracks with an
arbitrary degree of alignment by using the GSCM. Our model is in principle based on the GSCM developed by Santare
et al. [3]. In [3] the GSCM was used to predict the anisotropic moduli under plane stress loading. Here we are concerned with
the effective elastic moduli pertaining to anti-plane shear deformation. In our model the undamaged material can be isotro-
pic as well as anisotropic. An exact solution to the cracked elliptical inclusion problem, which is essential in the realization of
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GSCM, can be derived when the undamaged material is isotropic. On the other hand an approximate analytical solution can
still be derived when the undamaged material is anisotropic and when the crack density is not very high.

2. The effective moduli of a microcracked solid

For a microcracked solid, the strain energy relationship between the effective medium and the actual microcracked solid
can be expressed as [2,3]
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where S�ijkl is the effective compliance of the damaged material, Sijkl is the compliance of the undamaged material and V is the
sample volume. The above integral is the energy dissipated through the opening of each microcrack, summed over all M
cracks, and r0

ij is the applied homogeneous stress field while t0
i ¼ r0

ijnj is the traction along the crack face if the crack did
not exist and [ui] is the crack opening displacement. In this research we focus on the two dimensional case in which all
the cracks penetrate the solid through the x3-direction. In addition we only discuss the effective elastic moduli pertaining
to anti-plane shear deformation. In the following we will address two cases: (i) the undamaged material is isotropic; (ii)
the undamaged material is anisotropic.

2.1. Isotropic undamaged material

The degree of crack alignment can be described by the crack orientation distribution function /(h) with h, (|h| < p/2) being
the angle between an individual crack and the positive x1-axis [3]. Without losing generality, /(h) can be taken as an even
function of h since we have assumed that the undamaged solid is isotropic. For simplicity, /(h) is specifically given by [3,9]
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where h0 6 p/2. The two special cases of perfectly aligned cracks and randomly oriented cracks correspond to h0 = 0 and
h0 = p/2, respectively, in Eq. (2).

Once we have introduced /(h), the summation in the energy relationship Eq. (1) can be written as an integral over ori-
entation angle h,
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where A is a representative area of the sample.
In this study, we assume that the material is under anti-plane shear deformation. As a result the above energy relation-

ship Eq. (3) can be simplified as
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where r0
31 and r0

32 are the anti-plane, far-field stresses, C�44 and C�55 are the two relevant effective moduli of the damaged
material, l is the shear modulus of the undamaged material, c is the average half crack length and g = Mc2/A is the crack
density parameter.

If the crack did not exist, the uniform traction due to the far-field stresses, t0
3, along the line of the crack face is given by

t0
3 ¼ cos hr0

32 � sin hr0
31: ð5Þ

Next we introduce the GSCM [3] to approximately take into account the interaction between the cracks, as shown in
Fig. 1. The inclusion is assumed to have the properties of the undamaged material with known elastic moduli. The surround-
ing matrix is composed of the effective orthotropic, damaged material with the principal directions along the x1 and x2 axes.
The half-length of the crack is c, the semi-major and semi-minor axes of the ellipse are a and b, respectively. The crack den-
sity parameter g relates average crack length to the area of the ellipse, but in general, this leaves one of the three parameters
a, b and c, unspecified. Therefore, as an additional condition, we will require a2 � b2 = c2 to be satisfied. This is the same rela-
tionship that was used in [3] for convenience, but here it is necessary in order to make analytical solutions possible. The two-
phase composite is subjected to uniform anti-plane shearing r0

31 and r0
32 at infinity.

By using the complex variable method [12,13], the crack opening displacement for the elliptical domain, depicted in
Fig. 1, [u3] can be obtained exactly as
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