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a b s t r a c t 

A flow discretization is dual-consistent if the associated discrete adjoint equations are consistent with 

the analytic adjoint equations. We examine here the formulation and numerical solution of the dis- 

crete adjoint quasi-one-dimensional Euler equations derived from a second-order, central-difference, fi- 

nite volume scheme, for both cell-centered and cell-vertex discretizations. It is shown that, while the 

cell-vertex discretization is dual-consistent, the cell-centered discretization is not, showing oscillations 

near the boundaries. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

For some 30 years now, adjoint methods have made its way 

into Computational Fluid Dynamics and are now being routinely 

applied to optimal aerodynamic shape design [1–5] , error analy- 

sis and grid adaptation [6–8] , flow stability [9,10] and control [11] , 

among others. 

In design applications, the adjoint solution provides the sensi- 

tivities of an objective function such as lift or drag with respect 

to the design variables which parameterize the shape. Such sensi- 

tivities can then be used in a gradient-based optimization proce- 

dure. In error analysis applications, the adjoint solution provides 

the sensitivity of the objective function to errors in the flow solu- 

tion. This information can then be used to obtain a-posteriori error 

estimates or to perform output-based mesh adaptation. 

From a mathematical viewpoint, the (analytic) adjoint equa- 

tions are derived from the linearized flow equations. For numer- 

ical applications, a discretized version of the adjoint equations is 

required, which can be obtained by discretizing the analytic ad- 

joint equations (the continuous approach), or by linearizing the dis- 

cretized flow equations (the discrete approach). As the operations 

of linearization and discretization do not commute in general, sen- 

sitivity derivatives obtained by using the two approaches may not 

be identical, with discrete adjoint gradients being consistent with 

finite-difference gradients independently of the mesh size. On the 
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other hand, the continuous adjoint method has the advantage that 

the adjoint system has a unique formulation which does not de- 

pend on the numerical scheme used to solve the flow equations. 

This approach produces sensitivity derivatives which can be com- 

puted with boundary data alone [4] , resulting in significant sav- 

ings, but it is prone to accuracy problems, too [4,12] . 

However, design or error applications usually focus on the sen- 

sitivities and not on the adjoint solutions themselves, partly owing 

to the lack of exact solutions for the adjoint equations, so there 

is usually little information concerning the comparison between 

continuous and discrete adjoint solutions. Furthermore, such com- 

parisons may be inadequate since discrete adjoint solutions are 

usually plagued with accuracy and consistency issues such as nu- 

merical artifacts, layers and oscillations [4,13–16] . These misbehav- 

iors stem from the fact that, for certain discretizations of the flow 

equations, particularly at the boundaries of the domain, the corre- 

sponding discrete adjoint discretization is not dual consistent, that 

is to say, it is not a consistent discretization of the analytic ad- 

joint equation. Although these matters have no influence on the 

sensitivities, the lack of consistency has more than aesthetic con- 

sequences. In error estimation applications by means of the dual- 

weighted approach, adjoint solutions must be prolonged from the 

computational mesh onto an embedded auxiliary mesh obtained 

by isotropic refinement of the former [17] ; hence, inaccuracies in 

the adjoint solution may affect the prolonged solution rendering it 

unusable. Likewise, dual consistency improves functional accuracy 

(including superconvergence properties) as well as the effective- 

ness of error estimates [16] . 
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In this work we focus on the widely used finite-volume, 

central-differencing discretization with JST dissipation and we ap- 

ply it to the quasi-one-dimensional Euler equations. We show that 

on a 1D uniform mesh and for a volume-based cost function (the 

integrated pressure along the duct) , the corresponding discrete ad- 

joint problem is not dual consistent when formulated in a cell- 

centered approach, while dual consistency is recovered when for- 

mulated in a cell-vertex fashion. In earlier analysis (see e.g. [13] ), 

different flux functions were evaluated on the same grid, whereas 

in this work the flux functions are the same and what changes is 

actually whether degrees of freedom are located directly on the 

boundary or not. It is also assessed the extent to what the above 

conclusion depends on the detailed form of the dissipation, which 

has been shown to play a crucial role in the consistency of discrete 

adjoint schemes under different circumstances [18] . 

This new piece of evidence should add to the long-standing dis- 

cussions on the relative merits of continuous vs. discrete adjoint 

approaches on the one hand [19] , and cell-centered vs. cell-vertex 

discretizations [20,21] on the other. 

2. Flow equations and discretization 

Quasi-1D flows are interesting because, while retaining some of 

the features of more complex flows (such as shocks), they are nev- 

ertheless simple enough to possess exactly computable solutions 

for both the flow and adjoint equations under very generic circum- 

stances [22] . 

The quasi-one-dimensional Euler equations for steady flow in a 

duct of cross-section h ( x ) on the interval −1 ≤ x ≤ 1 read [22,23] : 

R (U, h ) = 

d 

dx 
( hF ) − dh 

dx 
P = 0 , (1) 

where 
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Here, ρ is the density, u is the velocity, p is the pressure, E is the 

total energy per unit mass and H is the stagnation enthalpy. It is 

assumed that the system is closed by the equation of state for an 

ideal gas 
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where the adiabatic exponent is taken to be γ = 1 . 4 . If the solu- 

tion contains a shock at a position x s , the flow equations must be 

supplemented with the Rankine–Hugoniot consistency condition 

[ F ] 
x + s 

x −s 
= 0 (4) 

2.1. Numerical discretization 

The flow equations are discretized on a uniform mesh using the 

central-differencing finite-volume scheme with JST-type artificial 

dissipation [24] described in [23] . Our conventions for node/cell 

and face indices are sketched in Fig. 1 below. The main differences 

between cell-centered and cell-vertex approaches arise at the in- 

let/outlet boundaries and are summarized in Fig. 2. 

For each control volume j of volume (length) �j the solution is 

obtained by (pseudo)time integration of the equations 

� j 

d U j 

dt 
+ R j = 0 (5) 

where, for an interior cell, the numerical residual takes the form 
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− C 
j− 1 
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j− 1 
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− S j (6) 

Fig. 1. Scheme of computational mesh. 

where 
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is the convective flux at face j ± 1 
2 , h 
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2 

≡ h ( x 
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2 

) is the duct’s 

cross-section at the face and F j = F ( U j ) is the flux vector ( 2 ) eval- 

uated at node/cell j . The artificial dissipation scheme is defined as 
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where c j is the speed of sound at node/cell j and k 2 = 1 / 2 , k 4 = 

1 / 64 . Finally, the source term S j is simply 

S j = 

( 

0 

p j 
0 

) (
h 

j+ 1 
2 

− h 

j− 1 
2 

)
. (10) 

We will consider only subsonic inlet/outlet conditions, which 

can result in subsonic or shocked transonic flow. Under such 

conditions, there are two incoming characteristics at the inflow 

boundary and one incoming characteristic at the outflow bound- 

ary. Boundary conditions are then defined by setting H = H ∞ 

and 

p t = p ( 1 + 

γ −1 
2 M 

2 ) 
γ

γ −1 = p t∞ 

and extrapolating the Mach number 

M = u/c from the interior at inflow (where c = 

√ 

γ p/ρ is the 

sound speed), and p = p ∞ 

(and extrapolating ρand u ) at outflow. 

In the code, boundary conditions are imposed weakly, details dif- 

fering between the cell-centered and cell-vertex case: 
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where U −1 = 2 U 0 − U 1 is the value at the ghost node/cell and 

U in = U( M in , H ∞ 

, p t∞ 

) (see below for precise definitions). The 

above choices modify the dissipation scheme at the first two 

interior mesh cells, reducing the dissipation at the bound- 

ary cell, D 0 = D 1 
2 

− D − 1 
2 

, to an undivided second-difference 
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