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a b s t r a c t 

A fourth order compact numerical scheme for variable coefficient parabolic problems with mixed deriva- 

tives is outlined. The finite difference scheme, presented here shows good wave resolution property and 

is stable. Implicit time discretization endows second order temporal accurateness to the scheme. Com- 

pact scheme for generalized parabolic 2D convection-diffusion equations is not available in the literature 

and this work addresses the same. The method is also suitable for computing incompressible flow in 

arbitrary domains. In this work we have successfully used the method to tackle flows, governed by the 

incompressible 2D unsteady Navier-Stokes (N-S) equations, in regions beyond rectangular. Further the 

proposed compact scheme has been found to be proficient in conjunction with numerically generated 

grids. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

1.1. Problem formulation 

Consider parabolic partial differential equation (PDE) of the 

form { 

∂ t φ(X, t) + Aφ(X, t) = s (X, t) , (X, t) ∈ � × (0 , T ] 
φ(X, 0) = φ0 (X ) , X ∈ �
b 1 (X, t) φ + b 2 (X , t) ∂ n φ = g(X , t) , X ∈ ∂�, t ∈ (0 , T ] 

(1) 

for the unknown transport variable φ( X, t ) defined over � ×
(0 , T ] ⊆ R 

2 × R . In this paper we are interested in a compact fourth 

order numerical discretization of this PDE in a rectangular domain 

� where A is a variable coefficient partial differential operator de- 

fined as 

[ Aφ](X, t) = −α1 (X, t)[ ∂ xx ] φ(X, t) − β(X, t)[ ∂ xy ] φ(X, t) 

− α2 (X, t)[ ∂ yy ] φ(X, t) 

+ c 1 (X, t)[ ∂ x ] φ(X, t) + c 2 (X, t)[ ∂ y ] φ(X, t) 

+ d(X, t) φ(X, t) (2) 

with X = (x, y ) . Further the coefficients α1 ( X, t ), α2 ( X, t ), β( X, t ), 

c 1 ( X, t ), c 2 ( X, t ), d ( X, t ) and forcing function s ( X, t ) together with 

φ0 ( X ) and g ( X, t ) are assumed to be sufficiently smooth. The only 

additional restriction we have on the Eq. (1) is the positive defi- 

niteness of the diffusion matrix. This is equivalent to α1 ( X, t ) > 0, 

α2 ( X, t ) > 0 and | β( X, t )| 2 ≤ 4 α1 ( X, t ) α2 ( X, t ) ∀ ( X, t ) ∈ � × (0, 
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T ]. b 1 and b 2 are arbitrary coefficients describing various boundary 

condition in the boundary normal direction n . 

The generalized convection-diffusion equations with mixed 

derivatives, given in Eq. (1) , arise in many applications. For ex- 

ample Heston equation, which financial mathematicians use for 

option pricing in stochastic volatility models [1,2] . We also note 

the occurrence of such differential equations in mathematical bi- 

ology [3] and also when coordinate transformations are applied 

to convection-diffusion equation on non-rectangular domains [4,5] . 

Such transformations allow us to work on simple rectangular do- 

mains or uniform grids independent of the domain of definition of 

the original problem. 

1.2. Prior work 

It is well known that higher order compact (HOC) finite differ- 

ence schemes lead to a system of equations resulting in a coeffi- 

cient matrix with smaller bandwidth as compared to non-compact 

schemes. Apart from solving convection-diffusion equation, differ- 

ent compact schemes have been used successfully to solve non- 

linear incompressible Navier-Stokes (N-S) equations in all three 

forms viz. , the streamfunction-vorticity [5–11] , the primitive vari- 

ables [12,13] and the biharmonic [14–16] formulations. 

Here it is worthwhile to point out that although a plethora 

of compact schemes [6–11,17–20] have been developed for 

convection-diffusion equation but few can tackle the generalized 

one as specified in Eq. (1) . Of course a handful of contributions 

having linkage to the equation can be found in the works of 

Fournié and Karaa [21] , Pandit et al. [5] , Karaa [22] and Düring and 
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Fournié [2] . Fournié and Karaa [21] in 2006 derived a fourth or- 

der compact finite difference (FD) scheme for a two-dimensional 

(2D) elliptic PDE with mixed derivative by considering the PDE 

itself as an auxiliary relation. But in their work they restricted 

α1 = 1 = α2 and also considered β to be a constant with β2 < 

4. Application of this approach to more general problems such as 

Eq. (1) is not straightforward and may not be possible. This is ac- 

centuated in the work of Pandit et al. [5] in 2007, where the au- 

thors tried to derive a compact approximation of parabolic equa- 

tion. Here the authors were ultimately constrained to work with 

situations where the mixed derivative is absent. Karaa [22] , also in 

2007, proposed a fourth order compact FD scheme for solving 2D 

elliptic and parabolic equations with mixed derivative having vari- 

able coefficient by using polynomial approximation, but was again 

limited by the choice of α1 = 1 = α2 . In 2012, Düring and Fournié

[2] used a compact scheme, having fourth order accuracy in space 

and second order accuracy in time, for option pricing using Heston 

model. In that manuscript the authors using a variable transfor- 

mation arrived at a system with α1 = α2 . Note that such transfor- 

mations are not always certain for a parabolic PDE with variable 

coefficients. 

Although HOC approximation of Eq. (1) is yet to be established, 

different splitting schemes and their alternating direction implicit 

(ADI) implementation can be found in the literature. Among them 

the works of in’t Hout and Foulon [1] , in’t Hout and Welfert [3] , 

Mckee et al. [4] and the references therein deserves special men- 

tion. Recently Martinsson [23] has designed a composite spectral 

collocation scheme for the equation with smooth solutions high- 

lighting importance of generalized parabolic equations. Of late Sen 

[11] has developed a new family of implicit HOC schemes for un- 

steady convection-diffusion equation with variable convection co- 

efficient. In this manuscript we generalize this philosophy to pro- 

pose a HOC formulation for variable coefficient parabolic problem 

with mixed derivative preserving truncation error of order four in 

space and two in time. To the best of our knowledge compact 

schemes for generalized parabolic 2D convection-diffusion equa- 

tions is not available in the literature and in this paper we intend 

to address the same. Another aim of the work is to obtain higher 

order accurate solutions of convection-diffusion equations in do- 

mains where it is imperative to use numerically generated grid. All 

the higher order schemes discussed above fails in conjunction with 

grids constructed numerically. Our scheme apart from being stable, 

is efficient in juxtaposition with numerical grids and shows better 

phase and amplitude error properties. We also augment the newly 

developed scheme to solve incompressible N-S equations in irreg- 

ular domains. 

2. Fourth order compact schemes for parabolic problem 

2.1. Spatial compact discretization 

We begin by briefly discussing the development of HOC formu- 

lation for the steady form of Eq. (1) , which is obtained when α1 , β , 

α2 , c 1 , c 2 , d, s and φ are independent of t . Under these conditions, 

Eq. (1) becomes {
Aφ(X ) = s (X ) , X ∈ �
b 1 (X ) φ + b 2 (X ) ∂ n φ = g(X ) , X ∈ ∂�. 

(3) 

For simplicity we assume � = [ a 1 , a 2 ] × [ a 3 , a 4 ] . In order to ob- 

tain a compact spatially fourth order accurate discretization we lay 

out a grid a 1 = x 0 < x 1 < ... < x M 

= a 2 , a 3 = y 0 < y 1 < ... < y N = a 4 
with x i = x 0 + ih for 0 ≤ i ≤ M and y j = y 0 + jk for 0 ≤ j ≤ N . Con- 

sider the following approximations for second order space deriva- 

tives appearing in Eq. (3) 

∂ xx φi, j = 2 δ2 
x φi, j − δx φx i, j 

+ O (h 

4 ) , (4) 

∂ yy φi, j = 2 δ2 
y φi, j − δy φy i, j 

+ O (k 4 ) , (5) 

∂ xy φi, j = δx φy i, j 
+ δy φx i, j 

− δx δy φi, j + O (h 

2 k 2 ) . (6) 

Here δx , δy , δ2 
x and δ2 

y are usual central difference operators and 

φi, j denote the approximate value of φ( X i, j ) at a typical grid point 

X i, j = (x i , y j ) . Detailed derivation of the above discretizations can 

be found in [11] . We thus obtain an O ( h 4 , k 4 , h 2 k 2 ) approximation 

for Eq. (3) on a nine point stencil as 

A h,k φi, j = s i, j (7) 

where the discrete operator A h, k is defined as 

A h,k φi, j = (−2 α1 i, j 
δ2 

x − 2 α2 i, j 
δ2 

y + βi, j δx δy + d i, j ) φi, j 

+ (α1 i, j 
δx − βi, j δy + c 1 i, j 

) φx i, j 

+ (α2 i, j 
δy − βi, j δx + c 2 i, j 

) φy i, j 
. (8) 

The finite difference operator given above depends on the three 

grid functions φ, φx and φy . Compatible fourth order accurate Padé

approximations for space derivatives given by (
I + 

h 

2 

6 

δ2 
x 

)
φx i, j 

= δx φi, j (9) 

and (
I + 

k 2 

6 

δ2 
y 

)
φy i, j 

= δy φi, j (10) 

are used to close the system. Note that vis-a-vis standard HOC for- 

mulation [7] , we are not required to approximate the derivatives 

of the convection coefficients c 1 , c 2 and forcing function s . The 

Eq. (7) can be viewed as a banded system with only nine non zero 

diagonals; of course drawback of requiring to approximate φx i, j 
and 

φy i, j 
separately remain. 

2.2. Modified wave number analysis 

A detailed wave number analysis of the fourth order compact 

approximation for φxx was carried out by Sen [11] . Here we shall 

like to examine the characteristic of the newly used fourth order 

compact approximation for the mixed derivative φxy . Considering 

the trial function 

˜ ψ = e I (κ1 x + κ2 y ) (I = 

√ −1 ) where κ1 and κ2 are 

the wave numbers corresponding to x and y directions respectively, 

it is easy to see that the fourth order compact discretization for 

mixed derivative, presented above, has characteristic 

λ4 OC−M 

= − sin (κ1 h ) sin (κ2 k ) 

hk 

[ 
3 

2 + cos (κ1 h ) 
+ 

3 

2 + cos (κ2 k ) 
− 1 

] 
. 

(11) 

To the best of our knowledge no HOC approximation for the mixed 

derivative is available in literature. To get a clear idea of the dissi- 

pation error associated with the proposed discretization we plot 

the non-dimensional characteristics as a function of κ1 h corre- 

sponding to four different values of κ2 k = 0 . 5 , 1 . 0 , 1 . 5 , 2 . 0 in Fig. 1 . 

The figure clearly indicates that the fourth order compact dis- 

cretization discussed here has superior wave resolution property 

than other standard discretization procedures viz. , the second or- 

der accurate central difference approximation (2 OC ) and fourth or- 

der accurate wide stencil approximation (4 OW ). 

2.3. Implicit time discretization 

The HOC approach developed for the steady case can be ex- 

tended directly to the unsteady case by simply replacing s by 

s − ∂ t φ in Eq. (3) . At grid point X i, j at time t , the semi-discrete 

fourth order scheme for the parabolic equation with variable coef- 

ficients will be 

∂ t φi, j (t) + A h,k φi, j (t) = s i, j (t) . (12) 
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