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a b s t r a c t 

The direct simulation of conjugate heat transfer has recently attracted considerable attention in many in- 

dustrial applications. However, the underlying physical phenomena are less clear due to the intrinsically 

interactions occurring at the interface of different materials at different temperatures with the surround- 

ing turbulent gas. To simulate these direct exchanges, here we study a unified multi-material formulation 

in two and three-dimension. The coupled system is solved using stabilized finite element methods com- 

bined with a posteriori error estimator for anisotropic mesh adaptation enhancing the interface represen- 

tation. Computational results are compared with experimental data in complex 3D industrial setups with 

up to four different materials. The results have demonstrated that convection, conduction and radiative 

heat transfer can be simultaneously used and easily applied yielding accurate predictions. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

With the increasing demands for reducing energy consump- 

tion and the pollutant emissions, the simulation of turbulent gas–

solid has considerably attracted several researchers in the past few 

years [1–3] . Indeed, applications range from thermal energy con- 

version systems, industrial furnaces, quenching and cooling con- 

trol systems, to environmental processes such as pollutant control 

and de-icing issues. The objective is generally to understand the 

physical problem, to optimize the design and to control the pro- 

cess. Recall also that many factors play an important role in such 

processes: minimization of local temperature gradients, ensuring a 

uniform temperature within the load, avoiding surface defects such 

as skid marks, minimizing energy usage, maximizing the quality of 

the steel product in terms of hardness, toughness and resistance 

[3,4] . Therefore, it is essential in most of these situations to treat 

precisely the heat exchange at the fluid–solid or the solid–solid in- 

terfaces and to evaluate with high accuracy the transfer and the 

gradients. 

In many works on conjugate heat transfer, we use classically 

appropriate heat transfer coefficients to account for a surrounding 

fluid or for another solid in contact, and thus we sidestep the in- 
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terfacial heat exchanges problems. Indeed, the standard strategy is 

to divide the global domain into several local subdomains where 

a local model (equation to be solved) can be carried out indepen- 

dently. The global solution is then reconstructed by suitably piec- 

ing together local solutions from individually modeled subdomains. 

However, these transfer coefficients, deduced in general by expen- 

sive experimental studies, may not reflect necessary a complex sit- 

uation, large diversity of shapes and geometries, the contact be- 

tween multi-material, or most importantly the turbulent gas-solid 

interactions in confined domains. 

In this context, there is a renewed interest in modeling the 

thermal coupling using full Eulerian frameworks in which the dif- 

ferent domains are taken into account by the use of a characteristic 

function (level set). Consequently, one set of equations with differ- 

ent thermal properties is solved. It avoids the use of empirical data 

to determine the heat transfer coefficient at the fluid–solid inter- 

face. The heat exchange is obtained directly by simulating the tur- 

bulent surrounding gas in the whole domain. The boundary con- 

ditions for radiative heat transfer are replaced by solving an addi- 

tional radiative transport equation (RTE) in both domains. It will 

generate a volume source term that is in turn introduced into the 

energy equation and rendered by the sharp discontinuity of the 

temperature and the properties of the materials. 

In spite of large number of research works on Eulerian formu- 

lation with or without level sets [5–7] , less attention has been 

paid to turbulent gas–solids flows and no experimental valida- 

tion on industrial setup were obtained [8] . This is explained by 

the difficulty to obtain sharply defined interfaces which makes the 
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approach inherently challenging to use and time consuming in par- 

ticular for high Reynolds number flows with boundary layers. 

In this work, a fully Eulerian unified framework is proposed to 

simulate solid–gas high Reynolds number flows with heat trans- 

fer. We particularly focus on accurately representing the interfaces 

of different physical domains and on dealing with the conjugate 

heat transfer that occurs among them in complex and challeng- 

ing configurations. Therefore, we refer to the use of an immersed 

stress method coupled with an a posteriori error estimator for 

anisotropic mesh adaptation. The distinguish features of this work, 

compared to [8] resides on the capability to generate extremely 

stretched anisotropic elements at the interfaces, on the ability to 

control the number of grid points in the mesh, and finally on solv- 

ing the coupled system using a three-field stabilized finite element 

to obtain oscillation-free solutions. 

The proposed approach is first applied to simulate an illustra- 

tive example and then it is used to simulate three real complex 

industrial problems with natural convection, forced convection and 

radiative heat transfer. The results show that even when several 

layers of different materials are used, the numerical simulations 

are in very good agreement with experimental ones. 

This paper is organized as follows: first, we present a detailed 

description of the immersed method using both the level set func- 

tion and the anisotropic mesh adaptation. The time-dependent, 

three dimensional, coupled problem is given in Section 3 and com- 

pleted by the discretization as well as the stabilized finite element 

methods for solving these equations. In Section 4 , the numerical 

performance of the proposed method is demonstrated by means of 

2D test cases and 3D real industrial problems. Comparisons with 

the literature and with the available experimental data are pro- 

vided. Finally, conclusions and perspectives are outlined. 

2. Eulerian framework 

Immersed Methods are very practical to setup complex numer- 

ical simulations in computational engineering. They are used in- 

tensively for fluid-structure interaction and in this work are ded- 

icated to conjugate heat transfer analysis. We recall that they are 

based on solving a single set of equations for the whole computa- 

tional domain and treating different subdomains as a single fluid 

with variable material properties. This section presents the com- 

plete description, which in turn is structured into three subsec- 

tions: immerse and define the immersed solid using the level-set 

function, apply the anisotropic mesh adaptation in the vicinity of 

the gas–solid interface and mix the thermo-physical properties ap- 

propriately for both domains. 

2.1. Level set approach 

At any point x of the computational domain �, the level-set 

function α corresponds to the signed distance from �im 

. In turn, 

the interface �im 

is given by the zero isovalue of the function α: 

α( x ) = ±d(x , �im 

) , x ∈ �, 

�im 

= { x , α(x ) = 0 } . (1) 

In this paper, the following sign convention is used: α ≥ 0 inside 

the solid domain defined by the interface �im 

and α ≤ 0 outside 

this domain. As explained, the signed distance function is used to 

localize the interface of the immersed solid but it is also used to 

initialize the desirable properties on both sides of the latter. 

Indeed, the physical and thermodynamic properties in the do- 

main are then calculated as a function of α; for instance, the mixed 

density is calculated using a linear interpolation between the val- 

ues of the density in the fluid and the solid: 

ρ = ρ f H(α) + ρs (1 − H(α)) (2) 

where H is a smoothed Heaviside function given by: 

H(α) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

1 if α > ε 

1 

2 

(
1 + 

α

ε 
+ 

1 

π
sin 

(
πα

ε 

))
if | α| ≤ ε 

0 if α < −ε 

(3) 

ε being a small parameter such that ε = O (h ) and h the mesh size 

in the normal direction to the interface. It is computed using the 

following expression: 

h im 

= max 
j,l∈ K 

∇ α · x 

jl (4) 

where x jl = x l − x j and K is the mesh element. 

2.2. Anisotropic mesh adaptation 

The difficulty to obtain sharply defined interfaces makes the Eu- 

lerian approach inherently challenging to use in particular for high 

Reynolds number flows with boundary layers. Moreover, the dis- 

continuity of the properties of different materials across the in- 

terface add an extra numerical difficulty to handle on the finite 

element solvers. Therefore, we briefly describe in this section the 

implementation details of anisotropic mesh adaptation designed to 

ensure accurate calculation of the temperature distribution along 

the gas–solid interface. This is critical for a correct modeling of 

industrial experiments. The algorithm proposed here gradually re- 

fines the mesh when approaching the interface. In this way, the 

mesh becomes locally refined which enables to sharply define the 

interface and to save a great number of elements compared to a 

classical isotropic refinement. This anisotropic mesh adaptation al- 

gorithm is built in order to compute a mesh and a numerical so- 

lution. Both are implicitly coupled since the solution is computed 

on the mesh and the mesh is specifically adapted to solution. This 

coupling is attained by iterating a fixed-point algorithm. At each 

stage, a numerical solution is computed on the current mesh and 

has to be analyzed by means of an error estimate. The considered 

error estimate aims at minimizing the interpolation error in norm 

L p , independently of the problem at hand. From the metric analy- 

sis in [9] , an analytic expression of the optimal metric is derived 

which minimizes the interpolation error in norm L p ( p is here cho- 

sen equal to 2). Let u be an analytic solution defined on computa- 

tional domain and let N denotes the desired number of elements 

for the mesh, the aim is to create the ”best” mesh M , i.e., the op- 

timal continuous metric M , to minimize the interpolation error 

|| u − �h u || 2 in L 2 norm. �h u denotes the linear interpolate of u 

on M . The local interpolation error in the neighborhood of a point 

p is given by: 

e M 

(p) = 

∑ 

i =1 , 3 

h 

2 
i | ∂ 

2 u 

∂ 2 α2 
i 

| (5) 

where h i stand for mesh size and 

∂ 2 u 
∂ 2 α2 

i 

represents the eigenvalues 

of the Hessian of variable u . The objective is to find the metric M 

that minimizes the error under the constraint of a fixed number of 

elements N . To this end, we have to solve the following optimiza- 

tion problem: 

min M 

E(M ) = min M 

∫ 
�
(e M 

) 2 d� (6) 

under the constraint: 

C(M ) = C −1 
0 

∫ 
�

�i =1 , 3 

1 

h i 

d� = N 

where C −1 
0 

is the volume of a regular tetrahedron. Following the 

lines in [9,10] , the optimal metric solution of (6) in the L 2 norm 
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