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a b s t r a c t

A non-boundary conforming formulation for simulating complex flows with moving solid boundaries on

fixed Cartesian grids is proposed. The direct forcing immersed boundary method (IBM) is implemented in

a direct numerical simulation (DNS) code (called Incompact3d) based on high-order compact schemes for

incompressible flows.

To satisfy the boundary conditions on the immersed interface, the velocity field at the grid points near the

interface is reconstructed via momentum forcing on a Cartesian grid by means of interpolation at forcing

points in the fluid domain. A novel interpolation scheme which is applicable to boundaries of arbitrary shape

is introduced and compared to a bi-linear model. A variance of this method utilizes a more compact stencil

which allows compatibility with two-dimensional domain decomposition of the DNS code.

Local force distributions and velocity fields were compared to identify which interpolation scheme best rep-

resents the solid boundaries by computing flow induced by a transversely oscillating cylinder.

The accuracy and efficiency of the present technique are examined by simulating two-dimensional flow over

a traveling wavy foil and comparing against numerical reference data. Finally, we present results from a three-

dimensional simulation of a lamprey-like body undulating with prescribed experimental kinematics of an-

guilliform type, in order to demonstrate the ability of the present implementation in computing flows around

moving solid objects with non-trivial geometries.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Fluid flow around complex stationary or moving geometries ap-

pears in a large number of situations of practical interest including

biological fluid mechanics (airflow in the vocal folds for instance) or

in life-science context as well as in engineering applications (fish-like

swimming e.g.). The numerical treatment of these kinds of problems

appears to be a challenging task because of time-varying geometries.

In order to take accurately small details of the geometry into ac-

count, the most popular method is to generate a sophisticated grid

following the body geometry and discretize the governing equations

on a non-structured mesh for which the boundaries of the compu-

tational domain lie on those of the physical domain. However, this
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technique shows a lack of ability to handle moving bodies which re-

quire the development of specific numerical schemes to deal with the

tedious task of the re-meshing.

An alternative method to avoid the drawbacks of the body-fitted

approach consists in extending capabilities of codes based on Carte-

sian grids via the use of non-boundary conforming techniques, which

may be classified into two categories. The first category, including

for instance sharp interface ([1,2]) or immersed interface methods

([3,4]), mimics the presence of embedded geometries by modifying

the numerical scheme in the immediate vicinity of the immersed

boundary. Such approaches lead to a sharp representation of the

immersed interface but extending it to three-dimensional problems

may appear to be a challenging task regarding the coding logistic. In

the second category a forcing term is added to the governing equa-

tions. Here, we use the term ‘immersed boundary’ (IB) method intro-

duced by Peskin [5] where this idea was employed to consider the full

interaction between elastic solids and the fluid. For situations consid-

ered in this paper where the motion of solid surfaces is a known of the
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problem, IB methods are categorized as either feedback-forcing (FF)

or direct-forcing (DF) approaches. In [6], Goldstein et al. propose the

FF method in which the forcing term can be viewed as a force den-

sity that brings the fluid velocity to zero near the immersed bound-

ary through a damping oscillation process. The numerical scheme

used in this case requires a spreading of the forcing term over the

interface. Moreover, the FF method leads to a severe additional re-

striction on the time step to maintain very low residual velocities

in locations where no-slip conditions are expected. In order to avoid

this limitation, the use of the DF technique proposed by Mohd-Yusof

[7] and then adapted by Fadlun et al. [8] is very attractive. In this

method, which introduces no additional numerical stability restric-

tion, the boundary condition is ensured in a quite straightforward

way by prescribing directly the velocity in forcing region, leading to a

quasi sharp representation of the interface.

The high implementation capability of the DF technique in ex-

isting Navier–Stokes solvers, motivated a number of recent studies

where alternative DF formulations have been proposed. The main

difference between them concerns the reconstruction of the velocity

field close to the immersed boundary and the treatment of grid nodes

that present geometric ambiguities with respect to the discretization

stencil. In [8,9,48], for example, the solution is reconstructed at the

fluid nodes that lie near the immersed boundary (fluid points with

at least one neighbor in the solid phase, labeled ‘forcing-nodes’). In

the former study an one-dimensional interpolation scheme along an

arbitrary grid line is considered, while in the last two the reconstruc-

tion is performed along the well-defined line normal to the inter-

face. In [10,12,13] on the other hand, the solution is reconstructed

at ‘ghost-cells’, which are points inside the solid phase with at least

one neighbor in the fluid phase. Both the above strategies have the

velocity boundary conditions implicitly build into the reconstruction

stencil, and therefore will potentially result in methodologies of com-

parable overall accuracy. The former strategy, however, which is the

one adopted in the present work has some advantages in cases with

moving boundaries as it will be discussed in the following.

In the case of ‘ghost-cell’ methods, as the body moves through the

fixed grid some of the ‘ghost-cells’ will emerge into the fluid and will

became fluid nodes. Since they were previously in the solid they have

no history in the fluid phase and no physically value for the velocity

and pressure at the previous timestep. In ‘forcing-nodes’ methods,

the points that emerge from the solid become the boundary points

that are central to the reconstruction procedure (labeled as ‘forcing

points’), and therefore their history in the fluid phase is irrelevant.

The points that require special treatment in this case are the forc-

ing points that move further into the fluid. In order to handle such

‘phase-change’ points, Yang and Balaras [16] introduced a field ex-

tension strategy that, at the end of each time step, the flow field is ex-

tended into the grid points with non-physical values in the solid sur-

face through extrapolations. By this way, the continuity of the deriva-

tives in forcing points is maintained.

The present work focuses on combination of direct forcing ap-

proach with centered finite difference schemes of high accuracy. Such

a combination is a priori problematic due to the discontinuities of the

velocity derivatives created by the forcing. This problem is related to

the quasi-spectral behavior of compact schemes that leads to spuri-

ous oscillations near the body surface (Gibbs phenomenon). In order

to reduce the discontinuity near the immersed boundary, Parnaudeau

et al. [14] proposed an analytical formula for defining a smooth target

velocity field in the full solid domain. This definition uses a mirror

flow of the fluid domain, where a modulation function is adjusted

to ensure the regularity of inner velocities and to avoid a singularity

point. However, for moving complex geometries such a specification

would not be adequate because of the time-dependent character of

the modulation function, for which a proper definition would be dif-

ficult to make. Another concern with the target velocity calibration in

[14,15] is the internal treatment of the solid body. Because the target

velocity is not divergence-free, the incompressibility condition must

be modified inside the body in order to allow a mass source/sink.

Fang et al. [47] use a Gaussian radial basis function (RBF) to in-

terpolate the velocity value at any point inside the body by using

the known velocity values at the points near the body surface and

satisfying the no-slip constraint at the body surface. Unlike analyti-

cal smoothing formula in [14], the RBF-based smoothing procedure

can be applied for bodies of general surface geometry. Nevertheless,

Gibbs oscillation has proven to be significantly alleviated by their

method in which only a zero velocity on the immersed boundary

is applied, while moving boundary problems has not been consid-

ered. In order to deal with this problem, the field extension strat-

egy proposed by Yang and Balaras [16] is implemented in the present

study.

In general, the approach proposed in [16] to reconstruct the veloc-

ity at forcing points is quite straightforward and efficient. One issue

with the bi-linear interpolation scheme used in [16] to compute the

velocity at the virtual point (labeled as ‘image point’ in our study) is

that its application deteriorates the spatial structure of the wake flow

when using a grid resolution not high enough, as it is shown in the

Results section. Furthermore, at marginal spatial resolution, the or-

der of the interpolation scheme is decisive for an accurate prediction

of statistical flow quantities. Accordingly, accuracy of such estima-

tions can logically be expected to improve by increasing the order of

the interpolation polynomials associated to the immersed boundary

reconstruction procedure.

On the other hand, in [16], the fluid force on the immersed bound-

ary was evaluated through a surface force integration procedure. Ba-

sically, the immersed boundary is first discretized into elements of

size similar to the grid spacing; then the velocity derivatives at the

surface are obtained through one-sided differencing; with the stress

tensor and the geometric information available for each boundary el-

ement, the surface force distribution can be evaluated directly. The

procedure is generalized and applicable to different types of IB meth-

ods. However, the results from this approach depend on the resolu-

tion of the surface discretization and the position of the elements.

Also, it is a post-processing step that can only be conducted after

the whole flow field has been solved. Actually, Lai and Peskin [26]

gave several approaches for evaluating fluid force on an immersed

body; the most straightforward approach is to integrate the momen-

tum forcing function over the whole domain, which represents the

total effect of the immersed boundary on the fluid. Since the forcing

function is available before the final solution of the momentum equa-

tions, the fluid force can be evaluated before the whole field is solved

[17].

In this paper, we present a strategy that can address both issues

discussed above in a simple and efficient manner. First, we propose

a local reconstruction of the solution near the immersed boundary

based on a high-order formulation which enables a high degree of

flexibility with respect to the interpolation stencil [18] in the frame-

work of a compact scheme [19] while allowing the use of a marginal

grid resolution to describe accurately the wake flow. Two alternative

interpolation strategies, successive 1D high-order polynomial and bi-

linear interpolation, respectively, are discussed. Then, we describe

the formulation consistent with our immersed boundary reconstruc-

tion operation for estimating the momentum forcing term explicitly.

Therefore, we can use the straightforward point integration of the

momentum forcing term to evaluate the fluid force exerted on the

immersed body instead of the surface integration approach in [16].

Moreover, as explained in the following, the three-step fractional step

method in [19] is modified to impose the Dirichlet boundary condi-

tions on the velocity when forcing is taken into account, allowing

a consistent and efficient solution of the pressure equation on the

whole domain. Also, as it is shown hereafter, this approach solves the

problem of fixing appropriate physically meaningful conditions for

the grid points everywhere in the solid region.
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