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a b s t r a c t

An attractive technique for forming and collecting aggregates of magnetic material at a liquid–air interface by

an applied magnetic field gradient was recently proposed, and its underlying principle was studied theoret-

ically and experimentally (Tsai et al., 2013): when the magnetic field is weak, the deflection of the liquid–air

interface has a steady shape, while for sufficiently strong fields, the interface destabilizes and forms a jet that

extracts magnetic material. Motivated by this work, we develop a numerical model for the closely related

problem of solving two-phase Navier–Stokes equations coupled with the static Maxwell equations. We com-

putationally model the forces generated by a magnetic field gradient produced by a permanent magnet and

so determine the interfacial deflection of a magnetic fluid (a pure ferrofluid system) and the transition into a

jet. We analyze the shape of the liquid–air interface during the deformation stage and the critical magnet dis-

tance for which the static interface transitions into a jet. We draw conclusions on the ability of our numerical

model to predict the large interfacial deformation and the consequent jetting, free of fitting parameters.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Synthesis and assembly on the nanoscale is an important goal of

contemporary science and technology. Magnetic nano/microparticles

arise in a wide range of industrial and biomedical applications, and

so are one target for controlled assembly. For example, function-

alized magnetic microparticles can be used to separate cells [1]

and magnetic microparticles have been used in microfluidics for

cell sorting, blood cleansing, and magneto-capillary self-assembly

(see e.g. [2] and references therein). When magnetic nanoparticles

such as magnetite are suspended at high concentration in aque-

ous or non-aqueous carrier fluids, the entire system behaves as a

continuum of magnetic fluid, known also as a ferrofluid. The rhe-

ology and interfacial shape of ferrofluids can be tuned with exter-

nal magnetic fields, often in useful ways. An example is the ap-

plication of ferrofluids in adaptive optics that has been considered

in recent experiments [3,4]. The control of ferrofluid properties us-

ing magnetic fields also has applications in mechanical sealing and

acoustics [5], targeted drug delivery [6–8] and treatment of retinal

detachment [9].

Thin liquid films and droplets are ubiquitous in nature and also

appear in many technological applications. The understanding of
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their dynamical behavior and their stability is therefore of great

importance and has attracted considerable attention in the litera-

ture. Recent research into thin film and droplet flows has resulted

in many experimental and theoretical developments, including ma-

nipulating film flows via external magnetic or electric fields to pro-

duce nanoscale patterns. In particular, experiments on thin ferrofluid

films and droplets have revealed the formation of a wide range of

morphologies [10–14]. Ferrofluids can be manipulated using mag-

netic forces and have been extensively investigated and widely used

in a variety of engineering applications; see Rosensweig [15] and a

more recent review by Nguyen [16]. Normal field instability of fer-

rofluid films (and the equivalent electric field problem) have been

extensively studied in the past, see e.g. [17,18]. However, despite

the increase in the number of applications, surprisingly little can

be found in the literature on the direct numerical simulations of

thin ferrofluid films in the presence of a nonuniform magnetic field

(such as is produced by a spherical magnet) and therefore our un-

derstanding of the instabilities that may occur in these flows is

limited.

An attractive technique for forming and collecting aggregates

of magnetic material at a liquid–air interface by an applied mag-

netic field was recently proposed, and its underlying principle was

studied theoretically and experimentally, by Tsai et al. [19]. In the

experiments described in [19], a water-based ferrofluid (EMG805,

Ferrotec), with a density of 1200 kg m−3 and viscosity of 3 mPa s,

is suspended in a shallow reservoir containing deionized water,

with a density of 1000 kg m−3 and viscosity of 1 mPa s, to form
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the magnetic mixture. This system is differentiated from a pure fer-

rofluid system because, in the presence of a magnet, it separates into

a region rich with magnetic material, and one of negligible magnetic

content. A spherical permanent magnet is slowly brought close to

the magnetic mixture allowing the ferrofluid to aggregate and form a

static hump at the liquid–air interface (see Fig. 1 in [19]). In these

experiments, a distinct boundary that separates the magnetic and

non-magnetic regions is observed. When the magnet is held suffi-

ciently close to the liquid–air interface, the hump destabilizes and

transforms to a jet. The theoretical approach developed in [19] de-

scribes a steady-state mathematical model for the behavior of the

magnetic-particle-laden fluid and the particle-free fluid regions. The

mathematical model results in [19] show excellent agreement with

the experimental data.

Motivated by this work, here we develop a numerical model for a

closely related problem: we computationally model the magnetically

induced interfacial deflection of a magnetic fluid (ferrofluid) and the

transition into a jet by a magnetic field gradient from a permanent

magnet placed above the free surface. The system we study differs

from that considered by Tsai et al. [19]: we consider a pure ferrofluid

system, while Tsai et al. model a system with both magnetically dom-

inated and non-magnetic regions. Fig. 1 shows a schematic illustrat-

ing the set-up we consider: the magnetic region occupied by pure

ferrofluid, the liquid–air interface, and the spherical permanent mag-

net. The deformation of the ferrofluid–air interface arises as a result

of the magnetic field gradient induced by the spherical permanent

magnet held above the fluid; in line with the experiments we will see

that, for sufficiently strong fields, the interface in our model destabi-

lizes and forms a jet. We note that, although the focus of this work is

to use a numerical study to uncover the transition to instability in a

pure ferrofluid system, we believe that our study demonstrates some,

perhaps not obvious, features of the development of the instability

observed in the work of Tsai et al. [19]. The natural next step would

be to consider the effect of the nonuniform distribution of the fer-

rofluid/magnetic particles, but this is beyond the scope of the present

paper.

Here we solve the two-phase Navier–Stokes equations coupled

with the static Maxwell equations in axisymmetric cylindrical polar
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Fig. 1. A schematic illustrating the computational set-up and the coordinate system

used. A spherical permanent magnet of radius Rm is centered at distance L from the

initially undeformed film (red dashed line), which has a depth L0. The magnetic force

deforms the interface, ∂� f , into a hump (red solid line). A unit normal outwards from

the interface is denoted by n. A typical computational domain, �, and its boundary, ∂�,

is shown by the dash-dotted line. We use axisymmetric cylindrical polar coordinates.

(For interpretation of the references to color in this figure legend, the reader is referred

to the web version of this article.)

coordinates. We analyze the shape of the liquid–air interface dur-

ing the deformation stage and the critical magnet distance (from

the undeformed free surface), for which the static interface tran-

sitions into a jet. We draw conclusions regarding the ability of

our numerical model to predict the large interfacial deformation

and the consequent jetting, free of fitting parameters. The numeri-

cal model provides a realistic and accurate framework for predict-

ing the evolution of magnetic liquids based on the Navier–Stokes

equations.

We describe the details of the numerical model in Section 2. In

Section 3, we describe a numerical boundary condition that may be

implemented to simulate non-uniform magnetic fields. In Section 4,

we present the numerical results and the comparison with experi-

mental observations. In Section 5, we give an overview and future

outlook for improving our modeling.

2. Mathematical model

Here we briefly describe the theoretical models that serve as a ba-

sis for the proposed numerical studies. The coupled motion of a fer-

rofluid surrounded by a non-magnetic fluid is governed by the (static)

Maxwell equations, the Navier–Stokes equations, and a constitutive

relationship for the magnetic induction B, magnetic field H, and the

magnetization M. The magnetostatic Maxwell equations for a non-

conducting ferrofluid are, in SI units,

∇ · B = 0, ∇ × H = 0, B(x, t) =
{
μ f H in ferrofluid

μmH in matrix,

where μ f denotes the magnetic permeability of the ferrofluid and

μm is the permeability of the matrix fluid. For our application, the

matrix fluid is air, which has a permeability very close to that for

a vacuum, μo. Therefore, we shall consider μm = μo throughout. A

magnetic scalar potential ψ is defined by H = ∇ψ , and satisfies

∇ · (μ∇ψ) = 0, (1)

where μ = μo and μ f in the matrix and ferrofluid, respectively. We

will assume that the magnetization is a linear function of the mag-

netic field given by M = χH, where χ = (μ f /μo − 1) is the mag-

netic susceptibility [20]. The magnetic induction B is therefore B =
μo(H + M) = μo(1 + χ)H.

The fluid equation of motion is described by the conservation of

mass and momentum (Navier–Stokes) equations

∇ · u = 0, (2)

ρ

(
∂u

∂t
+ (u · ∇)u

)
= −∇p + ∇ · (2ηD) + ∇ · τm + Fs + ρg, (3)

where Fs denotes the surface tension force per unit volume (pre-

sented as a body force [21]), p is pressure, u is velocity, D = 1
2 (∇u +

(∇u)T ) is the rate of deformation tensor (where T denotes the trans-

pose), η is viscosity, ρ is density, τm is the magnetic stress ten-

sor, and g is the gravitational acceleration. The total stress is τ =
−pI + 2ηD + τm, where I denotes the identity operator. The magnetic

stress tensor of an incompressible, isothermal, magnetizable medium

is [22]

τm = −μo

2
H2I + μHHT

,

where H = |H|. These equations must be solved subject to suitable

boundary and initial conditions, discussed in Section 3 below.

3. Numerical methodologies

We will use an Eulerian framework, where the material moves

through a stationary mesh, and therefore a special procedure will
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