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a b s t r a c t

A lattice method for modeling a solution of dumbbells in a Newtonian fluid, introduced by Onishi et al. (2005)

[1], is implemented within an existing lattice Boltzmann framework (Körner et al. (2005)) [2]. The numerical

scheme is compared with the analytical solution of steady state and start up simple shear flow and an oscil-

lating velocity field under uniform motion. Furthermore, a new transport model is introduced and validated

for an oscillating velocity field under uniform motion. Both tests are in good agreement with the analytical

solution. Additionally, a 4 to 1 planar contraction is simulated to test if the method is capable of reproduc-

ing complex viscoelastic flows. A lip vortex at the entrance corner is observed. A second benchmark is the

four-roller setup. The overall results are in good agreement with previous studies.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The lattice Boltzmann method (LBM) is a promising tool for get-

ting insight into fluid dynamics with especially complex boundaries.

It can be used to model flow through porous media [3] or foams with

free surfaces [4]. Most of these numerical studies cover Newtonian

fluids. One way to introduce viscoelastic effects into LBM are multi-

relaxation time (MRT) models. Giraud et al. [5] added two non prop-

agating distribution functions to incorporate memory effects of vis-

coelastic fluids. This model was further analyzed by Wagner [6] and

it was shown to be a non-objective Oldroyd model. The method was

improved by Lallemand and Luo [7] by achieving Galilean invariance,

isotropy and better stability. It was shown to reproduce the hydrody-

namics of a fluid described by the Jeffreys model. A huge simplifica-

tion was just recently developed by Dellar [8], removing the need of

resting particles. This seems to be a very efficient method to describe

linear viscoelastic effects. A class of viscoelastic fluids can be charac-

terized by the elastic dumbbell model [9]. Malaspinas et al. [10] de-

veloped a method to include the dumbbell model into the LBM, which

was further improved by Su et al. [11]. In the approach, the stress

tensor is calculated using an advection–diffusion scheme on an addi-

tional lattice for each component. A comprehensive review of lattice

Boltzmann methods for viscoelastic fluids is given by Phillips [12].

In this work, a numerical scheme that only needs one additional lat-

tice, developed by Onishi et al. [1], is studied. The governing Fokker–

Planck equation of the dumbbell distribution function is solved on

a lattice and the components of the stress tensor are reconstructed

from the distribution functions. The scheme is implemented into an
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existing LBM framework [2] and a new transport model for the dumb-

bell distribution functions is proposed. Furthermore, we test the nu-

merical scheme not only for simple shear cases but also for planar

flow.

In Section 2, an overview of the governing equations is presented,

followed by the numerical implementation in Section 3. The simula-

tion results are compared with the analytical solutions in Section 4

and benchmarks are presented in Section 5. A brief conclusion and

outlook is given in Section 6.

2. Governing equations

2.1. Fluid dynamics

The hydrodynamics of a general fluid is described by the conti-

nuity and Navier–Stokes equation. The continuity equation in the in-

compressible limit reads as:

∇ · �v = 0 (1)

Here,�v is the velocity. The general form of the Navier–Stokes equation

is:

ρ(∂t�v + �v · ∇�v) = −∇p + ∇ · T + �fext (2)

With p being the pressure, ρ being the fluid density and �fext being an

external force. The stress tensor T can be separated into a Newtonian

TN and a non-Newtonian TP contribution:

T = TN + TP (3)

For an incompressible fluid, the Newtonian part of the stress tensor

can be written as:

TN = μN

(
L + LT

)
(4)
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Fig. 1. Illustration of dumbbells solved in a Newtonian fluid.

L := (∇�v)T
(5)

Where μN is the dynamic viscosity of the Newtonian fluid. Inserting

T into Eq. (2), the incompressible Navier–Stokes equation with the

extra stress tensor becomes:

ρ(∂t�v + �v · ∇�v) = −∇p + μN��v + ∇ · TP + �fext (6)

2.2. The elastic dumbbell model

The elastic dumbbell model describes a solution of flexible

molecules in a Newtonian fluid (Fig. 1). The complex chains are sim-

plified to elastic dumbbells, consisting of two beads connected by a

spring. The probability to find a dumbbell within the volume d�x at

time t with the connection vector �q is given by the configurational

distribution function �(�q, �x, t). It can be shown that the time evolu-

tion of the configurational distribution function obeys [9]:

∂t� = −�v · ∇� − ∂�q(L · �q)� + 2εth

c f

∂�q

(
∂�q� + 1

εth

�fc�
)

(7)

where �fc is the connecting force between the two beads, εth = kbT is

the thermal energy and cf is the friction coefficient of the solvent. The

viscoelastic stress tensor can be written in Kramers form [9]:

TP = −nP

〈
�q�f c

〉
+ nPεthI (8)

Multiplying Eq. (7) with Q = �q�q and integrating over configurational

space, the upper-convected Maxwell (UCM) model can be obtained:

TP + λ1

∇
TP= μPD (9)

D = L + LT (10)

where λ1 is relaxation time and μP the zero shear viscosity of the

viscoelastic fluid. The upper convected time derivative is defined as:

∇
T= ∂t T + �v · ∇T − (L · T + T · LT ) (11)

Using the incompressible viscoelastic stress tensor (Eq. (3)), the to-

tal viscosity μ0 and the retardation time λ2, the UCM model can be

transformed to the Oldroyd-B constitutive equation:

T + λ1

∇
T = μ0

(
D + λ2

∇
D

)
(12)

μ0 = μN + μP (13)

λ2 = μN

μ0

λ1 (14)

In summary, an Oldroyd-B fluid is fully described by the equation sys-

tem:

∇ · �v = 0 (15)

ρ(∂t�v + �v · ∇�v) = −∇p + μN��v + ∇ · TP + �fext (16)

TP + λ1

∇
TP = μPD (17)

Fig. 2. Discrete velocities (left) and dumbbell connection vectors (right) on a D2Q9

lattice.

3. Numerical methods

Instead of solving the Navier–Stokes equations directly, the lat-
tice Boltzmann method is used. The basic idea of the LBM is to
solve the microscopic Boltzmann equation for the particle distribu-

tion function f (�ξ , �x, t), where �ξ is the microscopic velocity at (�x, t).
The macroscopic properties of the fluid can be recovered as moments
of the distribution function [13]. To solve the Boltzmann equation on
a lattice, the continuous velocity space is discretized to a set of veloc-
ity vectors �ei. For a lattice in two dimensions and with nine discrete
velocities (Fig. 2), �ei can be defined as:

�ei =

⎧⎪⎪⎨
⎪⎪⎩

(0, 0), i ∈ 0(
cos

(
π

2
(i − 1)

)
, sin

(
π

2
(i − 1)

))
, i ∈ {1, 3, 5, 7}

√
2

(
cos

(
π

2
(i − 1)

)
+ π

4
, sin

(
π

2
(i − 1)

)
+ π

4

)
, i ∈ {2, 4, 6, 8}

(18)

Therefore, there are discrete particle distribution functions fi(�x, t)
at each lattice site �x and the macroscopic properties can be calculated

by:

ρ(�x, t) =
∑

fi(�x, t) (19)

�v(�x, t) = 1

ρ(�x, t)

∑
fi(�x, t)�ei (20)

T(�x, t) =
∑

fi(�x, t)�ei�ei (21)

Using the BGK-approximation [14], the Boltzmann equation can be

solved on a lattice with the numerical scheme [13]:

fi(�x + δt · �ei, t + δt) = fi(�x, t) − δt

τN + 0.5δt

(
fi(�x, t) − f eq

i
(�x, t)

)
(22)

where τN = 3ν is the relaxation time of the Newtonian fluid and ν is

the kinematic viscosity. With a Chapman–Enskog expansion the con-

tinuity equation and the Navier–Stokes equations can be recovered.

Eq. (22) is solved in two steps. The first step is the stream step, where

the distribution functions propagate to the neighboring lattice sites

they point at. Followed by the collide step, in which the collision op-

erator is applied and the distribution function relaxes to its equilib-

rium state, given by Eq. (30). Similar to the discrete velocity space,

the configurational space �q of the dumbbell distribution function can

be represented by a set of discrete connection vectors �qi (Fig. 2).

�qi = �ei (23)

To solve the time evolution of the configurational distribution func-

tion (Eq. (7)) on a lattice, Onishi et al. [1] propose:

�i(�x, t + δt) = �i(�x, t) + δ�i − δt

τP + 0.5 δt

(
�i(�x, t) − �eq

i

)
+ τP

τP + 0.5 δt
i δt (24)

with τP = λ1 . Eq. (24) is connected through two terms with Eq. (22),

δ� i being responsible for the convection of the dumbbells and i
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