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a b s t r a c t

When simulating time-dependent particulate flows, one faces the dilemma that the domain decompo-

sition used for fluid simulation is not optimal for parallel computation of particle trajectories. There-

fore, the article proposes and compares two parallelization strategies for the particle phase based on

the fixed domain decomposition approach used in the open source lattice Boltzmann framework OpenLB

(http://www.openlb.net). The communication optimal strategy is found to be more efficient in the case of

homogeneously distributed particles. Convergence studies and performance tests are conducted using a sim-

plified geometry of the human lungs and show excellent parallel speedup. The implemented strategy is used

to simulate time-dependent particulate flows of micro-particles in a patient-specific geometry of a human

nasal cavity including paranasal sinuses. Dilute, uniformly distributed particles are released once at the start

of inspiration, as well as repeatedly during the entire inspiratory cycle, which leads to a more homogeneous

distribution. It is found that the deposition rates vary for the different injection methods.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Airborne particulates pose a serious health risk. They may cause

respiratory diseases such as lung cancer and asthma. On the other

hand, purposefully used e.g. in nasal or asthma sprays they can

help to treat such diseases. Investigating the deposition of partic-

ulates in the human respiratory system is therefore of great inter-

est, however, in vivo examinations are risky, expensive and some-

times not feasible. Instead, simulations are feasible and provide

detailed information on deposition. Yet, simulations of dilute particu-

late flows remain a challenging task in the research field of computa-

tional fluid dynamics (CFD). Especially transient flows through com-

plex geometries such as the nasal cavity demand for computational

power, that can only be satisfied by massive parallel systems. The

Euler–Lagrange ansatz allows tracking of individual particles and is

widely used to simulate such particulate flows. The Lattice Boltzmann

method (LBM) is an explicit algorithm to compute fluid flows, that al-

lows to embed a numerical integration scheme for particle tracking.

One of LBM’s greatest advantages compared to classical CFD meth-

ods is an efficient parallelization by domain decomposition [1–3]. Al-

though parallelization of pure particle tracking is trivial, the coupling

of both algorithms for transient flows poses a challenge. Computing
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particle trajectories on a different node as the respective fluid domain

leads to high communication costs. Computation on the same node

reduces parallel efficiency. In the scope of this article we tackle this

dilemma by comparing two new parallelization strategies for the par-

ticle tracking algorithm based on the fixed domain decomposition of

the fluid. The less complex strategy is successfully used to simulate

time-dependent particulate flows in the human respiratory system.

Flow characteristics in the human airways have been studied be-

fore, both experimentally and numerically. In a general manner, Kle-

instreuer and Zhang [4] provide a detailed overview on publications

considering state-of-the-art models, experimental observations and

computer simulations for all parts of the respiratory system. Vascon-

celos et al. [5] simulated impact distributions of particles in a model

of the tracheobronchial tree and stated a simple connection between

the Stokes number and the escape rate. Studies concerning the par-

ticle deposition in the human nasal cavity have been performed in

the past, experimentally on nasal airway replicas (Cheng et al. [6];

Kelly et al. [7]) as well as in vivo measurement on humans (Cheng

et al. [8]). Finck [9] simulated particulate flows through the model of

a nasal cavity using LBM and Lagrangian particle tracking. Usually in

numerical studies particles are injected only once at a certain time,

e.g. to model particle drug delivery with a nasal spray (Chen et al.

[10]; Inthavong et al. [11,12]). In most of the studies, a constant in-

halation flow rate with constant inlet velocity at the nostrils is used,

while simulations of unsteady inhalation are rare in literature. To our

knowledge only Se et al. [13] simulated particle deposition with an

unsteady flow. When simulating flow in nasal cavities most authors
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omit the paranasal sinuses. As far as known to the authors, only Tu

et al. [14] investigated deposition of nanoparticles for laminar flow in

a geometry considering sinuses with focus on the diffusion process.

The objective of this article is to provide a parallel algorithm to

simulate unsteady particulate flows in the human respiratory sys-

tem. It is organized as follows: In Section 2, the mathematical mod-

eling and numerical methods for particulate flows are introduced. In

Section 3 two new parallelization strategies are proposed and com-

pared concerning their respective computational and communication

complexity. Section 4 presents numeric results for the more efficient

algorithm. It is validated and speedup tests are performed. It is then

used to simulate unsteady particle laden flows in the complex geom-

etry of a patient specific nasal cavity including paranasal sinuses.

2. Material and methods

2.1. Mathematical modeling

To simulate the dynamics of disperse two-phase flows two differ-

ent possibilities are standard: firstly, the Euler–Euler and secondly,

the Euler–Lagrangian approach. The first one considers the continu-

ous as well as the disperse phase to be homogeneous and uses Eu-

lerian representation for both. In the second approach only the fluid

phase has an Eulerian representation, while for each particle of the

discrete phase the trajectory is tracked individually in a Lagrangian

way. For particles with diameter dP > 1 μm usually the Euler–

Lagrange modeling approach is used. In particular, the fluid phase is

not influenced by the particles (one way coupling). For smaller parti-

cles (1 < dP < 150 nm) usually the Euler–Euler approach is employed.

In finding particle deposition patterns in the human respiratory sys-

tem the continuous phase is air. We choose to approximate it as an

incompressible Newtonian fluid, which is the general approach for

flows with Mach number less than 0.3. Therefore the incompressible

Navier–Stokes equations apply

∂uF

∂t
+ (uF · ∇)uF = − 1

ρ
∇p + ν�uF in (t0, t1) × �,

∇ · uF = 0 in (t0, t1) × �,

(1)

where p : (t0, t1) × � → R denotes the pressure and uF : (t0, t1) ×
� → R

3 the fluid velocity, where � ⊆ R
3 represents the domain,

(t0, t1) ⊆ R the considered time interval, ν the kinematic viscosity

and ρ the fluid density.

Each particle of the disperse phase is tracked according to New-

ton’s second law of motion

mP

∂uP

∂t
= F P in (t0, t1) × �.

We assume particles to have velocity uP : (t0, t1) → R
3 and con-

stant mass mP ∈ R>0. The force F P = ∑
i F P,i can be composed of

forces FP, i acting on the particles, such as Stokes drag force F St =
6πaμF(uF − uP). Other forces, such as Basset force or virtual mass are

extremely small in the considered setup and can be neglected [15].

2.2. Discretization

In the following the introduced equations are discretized accord-

ing to the used numerical methods.

2.2.1. Fluid phase (Euler)

The considered subclass of LBMs enables the simulation of the dy-

namics of incompressible Newtonian fluids. Instead of directly com-

puting the quantities of interest, which are the fluid velocity uF =
uF(t, r) and fluid pressure p = p(t, r) for r ∈ � and t ∈ [t0, t1], a

lattice Boltzmann numerical model computes the dynamics of parti-

cle distribution functions f : [t0, t1] × � × R
3 → R≥0 in a phase space

� × R
3 with position r ∈ � and particle velocity v ∈ R

3. The contin-

uous transient phase space is replaced by a discrete position space

�h with a spacing of �r = h for the positions, a set of q ∈ N vectors

vi for the velocities and a spacing of �t = h2 for time. The result-

ing discrete phase space is called the lattice and is labeled with the

term DdQq. To reflect the discretization of the velocity space, the con-

tinuous distribution function f is replaced by a set of q distribution

functions fi : [t0, t1] × � → R≥0 (i = 0, 1, . . . , q − 1), representing an

average value of f in the vicinity of the velocity vi. Detailed derivations

of various LBM can be found in the literature, e.g. in [16]. The iterative

process in an LB algorithm can be written in two steps, the collision

step (2) and the streaming step (3):

f̃i(t, r) = fi(t, r) − 1

3ν + 1/2

(
fi(t, r) − Meq

i
(t, r)

)
, (2)

fi(t + h2, r + h2vi) = f̃i(t, r) (3)

for i = 0, 1, . . . , q − 1, where

Meq
i (t, r) :

= wi

w
ρ
(

1+3h2 vi · uF(t, r)− 3

2
h2u2

F(t, r) + 9

2
h4(vi · uF(t, r))

2
)

is a discretized Maxwell distribution with moments ρ and uF given

according to

ρ :=
q−1∑
i=0

fi and ρuF :=
q−1∑
i=0

vi fi.

The variable uF now denotes the discrete fluid velocity and ρ the dis-

crete mass density given in �h, which is related to the macroscopic

pressure by p = ρ
3h2 . The kinematic fluid viscosity ν is assumed to be

given, and the terms wi/w, vih (i = 0, 1, . . . , q − 1) are constants de-

pending on the LBM of choice. The discrete fluid velocity uF and the

discrete pressure p can be related to the solution of a macroscopic

initial value problem, governed by an incompressible Navier–Stokes

equation, as shown in [17].

2.2.2. Particle phase (Lagrange)

If the fluid velocity at position r ∈ � of a particle is known, it is

possible to compute the particle velocity by solving

mP

∂uP

∂t
= F St,

where F St = F St(t, uP(t)) = 6πaμF(uF(t) − uP(t)) is Stokes’ drag

force. The backward Euler method with the following update rule

uP(t + kh2) = uP(t) + kh2

mP

F St(t + kh2, uP(t + kh2))

is used, with the initial condition uP(t0) = uF(t0) and a small k ∈ N.

This does not lead to an implicit non-linear system of equations, since

substituting

F St(t + kh2, uP(t + kh2)) = 6πaμF

(
uF(t + kh2) − uP(t + kh2)

)
in the last equation, leads to

uP(t + kh2) = uP(t) + kh2σ
(
uF(t + kh2) − uP(t + kh2)

)
,

with σ = 6πaμF
mP

. Rearranging leads to

uP(t + kh2) = uP(t) + kh2σuF(t + kh2)

1 + kh2σ
.

As uF is only available on lattice nodes, it is interpolated by a trilinear

interpolation. Therefore lattice refinement can influence the particle

trajectories.
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