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a b s t r a c t

We use three dimensional computer simulations to investigate the free swimming of plunging elastic plates

with aspect ratios ranging from 0.5 to 5 in a viscous fluid with Reynolds number 250. We show that maximum

velocity occurs near the first natural frequency regardless of aspect ratio, whereas the maximum swimming

economy occurs away from the first natural frequency and is associated with a specific swimmer bending

pattern. Moreover, we show that the low aspect ratio swimmers, those with wider spans, are not only the

fastest but also the most economical. The faster speeds are associated with a decrease in effective drag for low

aspect ratio plunging swimmers. We find that the recently proposed vortex-induced drag model adequately

explains the drag reduction by suggesting that the smaller relative size of side vortices in low aspect ratio

swimmers creates less drag per unit width.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Designing robotic underwater vehicles or flapping flyers that can

imitate the motion of fish or insects using oscillating flexible ap-

pendages is an active area of research. Over the years, researchers

have investigated the complex hydrodynamics of oscillating fins to

understand how they can generate rapid and efficient propulsion.

Early studies by Wu [1–3] and Lighthill [4–6] used two dimensional

inviscid models to estimate thrust generated by oscillating filaments.

These models have been recently extended to three dimensions [7].

Experiments with flexible oscillating plates [8–15], two-dimensional

[16,17], and three-dimensional computational studies [18–20] have

provided further insights on thrust production, cruising velocity, and

efficiency in a wide parameter space. These studies indicated that fast

swimming and larger thrust are related to resonance oscillations.

Since fish fins have non-rectangular geometry, several recent

studies have explored the effect of shape on the swimming using

undulating fins. Li, et al. [21] investigated the thrust performance

of rigid three-dimensional plates with a non-rectangular geometry

that represented a forked tail fin and found that forked fins are more

efficient than rectangular fins. Other studies sought to optimize

the fin shape using both Lighthill’s theory [22,23] and viscous flow

simulations with fully prescribed kinematics [24]. Each of these

studies produced optimal shapes that roughly resembled a real

fish – a streamlined body with a caudal fin appendage – but differ

between studies. These differing outcomes and conclusions from
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each study likely stem from different optimization algorithms and

flow parameters. For example, Tokic and Yue [23] compared their

optimal shapes to real fish and found that they are similar. On the

other hand, van Rees et al. [24] found optimal shapes that differ from

real fish and showed that they even outperform real fish.

While these studies provide important insights on an optimal

shape for an oscillating swimmer, these inconclusive results indicate

that hydrodynamic effects associated with fins of different shapes are

not fully understood. Towards this goal, we systematically study the

hydrodynamics of rectangular flexible fins with different aspect ra-

tios. Specifically, we approximate the oscillating flexible fin as a thin

elastic plate with a prescribed plunging motion at its leading edge.

We probe the hydrodynamics of these oscillating rectangular plates,

henceforth called swimmers, undergoing free swimming. In this state

the swimmer experiences no net time averaged forces as thrust and

drag are equally balanced, i.e. the swimmer cruises forward. We cal-

culate the steady state swimming velocity and power consumption,

quantify the swimming efficiency, and show how swimmer aspect

ratio affects the swimming parameters.

2. Computational model

2.1. Geometry and system parameters

Our elastic swimmer is modeled as a thin, elastic plate with length

L and width w. The plate thickness b is sufficiently small, i.e. b < <L, so

the plate assumed to be infinitely thin. We characterize the swimmer

geometry by the aspect ratio AR = L/w. Fig. 1 illustrates the geom-

etry of swimmers with 3 different aspect ratios. In our simulations,

we vary aspect ratio by keeping L constant and changing w. As Fig. 1

shows, the swimmer leading edge undergoes a prescribed sinusoidal
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Fig. 1. Schematic of swimmers with aspect ratios (a) AR = 5, (b) AR = 1, and (c)

AR = 0.5. In all cases, the leading edge undergoes a sinusoidal plunging motion with

amplitude a0. Overlaid are transparent snapshots of the bending pattern at different

instants of time during one period when the swimmers are actuated at the natural

frequency.

plunging motion given by a(t) = a0 cos (ωt), where a0 is the oscilla-

tion amplitude, ω is the driving frequency, and t is time. Note that in

our simulations we keep ω and a0 constant.

The elastic swimmer is submerged entirely in an incompressible

Newtonian fluid with viscosity μ and density ρ . The constant driving

frequency leads to a constant Reynolds number Re = ρωa0L/μ. In ad-

dition, the swimmer dynamic bending depends on the mass ratio be-

tween the solid and fluid, χ = ρL/ρsb, where ρs is the density of the

solid swimmer. In this study, we fix the mass ratio to be constant and

equal to 1. For wider swimmers, χ is equivalent to the added mass

of the fluid periodically displaced as the swimmer plunges through

the fluid; however, for narrow swimmers the added mass can be es-

timated as χ/AR.

Swimmer deformation is strongly affected by the swimmer bend-

ing rigidity EI. In any structural vibration system, the deformation re-

sponse is dictated by the system’s proximity to its natural frequen-

cies (defined as the frequencies at which the system vibrates in the

absence of external forces). The first natural frequency ω0 can be

found for a swimmer that is constrained to not swim forward as the

frequency at which the phase between the swimmer relative deflec-

tion and root displacement is 90° [19]. When damping is sufficiently

small, oscillations are amplified the most when the driving frequency

ω ≈ ω0, i.e. the system is driven near its first natural frequency. In

our simulations we apply a constant driving frequency, so we vary

the bending rigidity to investigate the swimming near the first nat-

ural frequency. Note that the first natural frequency of the swimmer

submerged in the fluid is substantially different from that in vacuum

[25]. Moreover, the natural frequency in fluid depends on the plate

geometry and density ratio. Therefore, we use our simulations to di-

rectly determine the bending rigidity, EI0, that leads to the first nat-

ural frequency for the constant value of ω used in this study. Specif-

ically, we constrain the plunging plate from swimming forward and

calculate the root and tip deflections as a function of time for differ-

ent values of the bending rigidity. The bending rigidity that leads to

a phase difference between relative tip deflection and root displace-

ment of 90° is used as EI0. This procedure is repeated for all aspect

ratios considered in this study.

Because we keep ω constant and vary EI, we define a quantity

r = (EI/EI0)
−0.5 to characterize the swimmer’s vibration response

proximity to its first natural frequency. To first order, this quantity

approximates the frequency ratio, i.e. r ≈ ω/ω0. Therefore, we will

refer to r as the frequency ratio. Note that this parameter set allows

us to keep the Reynolds number constant in our simulations while

probing the effect of changing swimmer elasticity.

In our study, we focus on the effects of varying aspect ratio

AR = L/w and frequency ratio r. For different aspect ratios, we ex-

pect that the geometrical changes will induce different flow pat-

terns, thereby affecting the swimmer’s propulsive capability. We as-

sess the performance of our elastic plunging swimmer by finding

its dimensionless period-averaged steady state swimming velocity,

U = Ũ/U0, and power consumption per unit width, P = P̃/P0. Here,

the dimensional quantities Ũ and P̃ are normalized by the charac-

teristic velocity U0 = ωL/2π and characteristic power per unit width

P0 = 0.5ρU3
0

L. We also introduce the dimensionless swimming econ-

omy ε = U/P. This quantity characterizes the distance traveled per

unit work. Swimmers with larger ɛ can travel a longer distance using

the same amount of work.

2.2. Fluid-structure interaction model

In our fully coupled fluid-structure interaction (FSI) simulations,

we use a three-dimensional lattice Boltzmann model (LBM) inte-

grated with the lattice spring model (LSM). LBM and LSM simu-

late the fluid flow and plate deformation, respectively. We have pre-

viously employed this computational model to investigate the free

swimming of flexible elastic plates with constant aspect ratio L/w =
2.5 [19].

Briefly, LBM is a particle based mesoscale method that simulates

an incompressible Newtonian fluid [26–28]. In our study we em-

ploy a D3Q19 model. In three dimensions the continuous fluid is dis-

cretized on a cubic lattice, with a set of 19 continuous velocity dis-

tribution functions, fi(r, ci, t), characterizing the fluid at each node.

Specifically, fi(r, ci, t) represents the mass density of “particles” at po-

sition r and time t, propagating in direction i with velocity ci. The

distribution functions evolve according to the discrete Boltzmann

equation [29]. Hydrodynamic quantities are calculated as moments

of fi(r, ci, t). The fluid density is given by the sum of distribution

functions, ρ = ∑
i fi, the momentum by the first moment, j = ∑

i ci fi,

and stresses by the second moment � = ∑
i cici fi. In our simulations

we set the swimmer length L = 50, oscillation amplitude a0 = 0.1L,

fluid density ρ = 1, driving period, τ = 2π/ω = 2000 and viscosity

μ = π/1000, which yields a fluid with Reynolds number 250. The di-

mensional values are given in LB units.

The solid mechanics of the elastic swimmer is simulated using

LSM [19,30–33]. In LSM, the continuous, elastic solid is discretized as

a network of point masses (nodes) connected by harmonic springs. As

mentioned previously, the swimmer is assumed to be sufficiently thin

to be modeled as a two-dimensional plate. Therefore, we model the

swimmer as a triangular lattice of identical point masses connected

by bending and stretching springs with stiffness ks and kb, respec-

tively, as shown in Fig. 2 for the case of AR = 2.5. Here, the nodes indi-

cate the point masses, and the straight lines connecting them depict

the stretching springs. Bending springs are introduced for all straight-

line triplets. The open circles indicate the nodes with prescribed kine-

matics at the leading edge, while the filled circles represent passive

mass nodes. This particular arrangement of masses and springs sim-

ulates an elastic plate with bending rigidity EI = 3
√

3
4 kbw(1 − ν2) and

Poisson’s ratio ν = 1/3, determined by comparing the elastic energy

density of the discretized model to that of the continuum model

[34,35]. The solid nodes have equilibrium spacing 
s = 2.325 and

Fig. 2. Swimmer modeled as a triangular lattice within LSM. Open circles represent

nodes with prescribed kinematics at the leading edge, while filled circles indicate po-

sitions of mass nodes. Straight lines depict stretching springs. Bending springs connect

all mass node triplets on a straight line.
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