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a b s t r a c t

The electro-osmotic flow through a channel between two undulated surfaces induced by an external electric

field is investigated. The gap of the channel is very small and comparable to the thickness of the electrical

double layers. A lattice Boltzmann simulation is carried out on the model consisting of the Poisson equation

for electrical potential, the Nernst–Planck equation for ion concentration, and the Navier–Stokes equations

for flows of the electrolyte solution. An analytical model that predicts the flow rate is also derived under the

assumption that the channel width is very small compared with the characteristic length of the variation

along the channel. The analytical results are compared with the numerical results obtained by using the

lattice Boltzmann method. In the case of a constant surface charge density along the channel, the variation

of the channel width reduces the electro-osmotic flow, and the flow rate is smaller than that of a straight

channel. In the case of a surface charge density distributed inhomogeneously, one-way flow occurs even

under the restriction of a zero net surface charge along the channel.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Adjacent to the interface between an electrolyte solution and a

charged solid surface, an electrical double layer is formed. The thick-

ness of the double layer ranges from a few nanometers to hundreds

of nanometers, depending on the salt concentration. Since the ion

concentration in the electrical double layer is highly inhomogeneous

and the local charge neutrality is broken, interaction with an exter-

nally applied electric field can cause a driving force acting on the

electrolyte solution. The driving force is the main factor for electroki-

netic effects, such as the electro-migration of colloid particles and the

electro-osmotic flow inside microchannels [1,2], which are especially

conspicuous in small-scale systems.

Micro- and nano-fabrication techniques have developed greatly

in recent years, and so researchers have been able to control and

use electrokinetic phenomena in engineering applications. For ex-

ample, an electro-osmotic pump without moving parts [3,4] and

an energy-harvesting device using the driving force induced by

the salt-concentration gradient [5] have been proposed very re-

cently. Along with the expectations for engineering applications,

fundamental research relevant to electrokinetic phenomena in
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small-scale systems, ranging from nano- to micrometers, has also at-

tracted attention [6–15]. Particularly, the advances in observing and

processing techniques have prompted research focusing on surface

properties such as roughness and structure [16–23].

In the present study, to clarify the effects of surface properties

on electrokinetic phenomena, we investigate electro-osmotic flows

between two surfaces, which have a periodic structure and a non-

uniform charge distribution, by means of both numerical and ana-

lytical approaches. The numerical analysis is based on the coupled

lattice Boltzmann method for solving the Navier–Stokes equations,

the Nernst–Plank equation, and the Poisson equation [24]. The nu-

merical solutions to these equations, i.e., the electrolyte flow, the

ion concentrations, and the electrical field, are directly obtained. In

the analytical approach, the lubrication approximation theory [25–

27] is applied to the system with electrical double layers of fi-

nite thickness, to derive a model equation that predicts the flow

rate under the assumption of moderate variation of the surface

structure along the channel. With these approaches, we investigate

the electro-osmotic flow in microchannels formed by the surfaces

that are undulated and (a) charged negatively at a constant sur-

face charge density or (b) charged non-uniformly along the chan-

nel such that the net surface charge vanishes. For both cases, the

electro-osmotic flow rate is evaluated and the dependency on geo-

metrical parameters, such as the amplitude of the surface shape, is

discussed.
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2. Problem and basic equations

2.1. Channel with undulated surfaces

Let us consider a channel between two walls, each of which has a

periodic structure of period L in the x direction. The positions of the

interfaces are expressed as y = ±h(x) (Fig. 1). The surface charge den-

sity on the channel walls is assumed to be a given function σ (x). The

two-dimensional domain between the surfaces (−h(x) < y < h(x)) is

filled with a 1:1 electrolyte solution, and the electrical double layer is

formed near the interfaces. We investigate the electro-osmotic flow

caused by an electrical field applied in the x direction by applying the

governing equations described in the next subsection.

2.2. Governing equations

We assume a Newtonian fluid for the electrolyte solution, and

then the flow is described by the Navier–Stokes equations:

∂uj

∂x j

= 0, (1)

∂ui

∂t
+ uj

∂ui

∂x j

= − 1

ρ0

∂ p

∂xi

+ ν
∂2ui

∂x2
j

+ Fi

ρ0

, (2)

where t is the time and x is the spatial coordinate. In the present pa-

per, we use either boldface letters or assign indexes i and j to desig-

nate vector elements. The summation convention is assumed for re-

peated indexes. The functions u(t ,x) and p(t ,x) are the flow velocity

and the pressure of the electrolyte solution, respectively, and F (t ,x)

is the body force per unit volume. The density ρ0 and the kinematic

viscosity ν of the electrolyte solution are assumed to be constant.

The mass conservation equation for the ion species is written as

∂Cm

∂t
+ ∂ Jm j

∂x j

= 0, (3)

Jmi = −ezmDm

kBT
Cm

∂φ

∂xi

− Dm
∂Cm

∂xi

+ Cmui, (4)

where Cm and Jm denote the concentration and the flux of an ion, re-

spectively, with m = a for the anion and m = c for the cation. Here, e is

the unit charge, kB is Boltzmann’s constant, and T is the temperature.

The constants zm and Dm are the valence and the diffusion coefficient

of species m, respectively. Equation (4) is referred to as the Nernst–

Planck model [28], where the first, second, and third terms on the

right-hand side of the flux equation are the contributions of electro-

chemical migration, diffusion, and convection of the electrolyte solu-

tion, respectively.

Finally, the electrical potential φ is governed by the following

Poisson equation:

ε
∂2φ

∂x2
j

= −ρe, (5)

where ε is the dielectric constant of the electrolyte solution. The local

charge density ρe is defined in terms of the ion concentration as

ρe =
∑

m

FzmCm, (6)

where F is Faraday’s constant. With this local charge density, the body

force F in Eq. (2) is defined as the interaction with the electric field:

Fi = −ρe
∂φ

∂xi

. (7)

Fig. 1. Geometry of the problem.

If the convection term in Eq. (4) is negligible compared with

the other two terms and a unique value of potential is defined

at Cm = C0, integration of Eq. (4) yields the Boltzmann distribution

Cm = C0exp(−ezmφ/kBT ). With this formula, Eq. (5) reduces to the

Poisson–Boltzmann equation. In the electrokinetic flows considered

in the present paper, however, although the convection term is suf-

ficiently small, specifying a unique potential value at Cm = C0 is dif-

ficult because of the external potential gradient. We therefore apply

the original set of equations described here in the numerical simu-

lations in Section 5. Then the ion distribution affected by the exter-

nal potential is obtained as shown in Section 5.2, which the Poisson–

Boltzmann equation decoupled from the external potential field fails

to capture.

2.3. Boundary conditions on solid–liquid interface

For the flow velocity, the ordinary non-slip condition is assumed

at the solid–liquid interface:

ui = 0, at y = ±h(x). (8)

Note that in nano-scale flows, the simple non-slip condition is not

sufficient and so a model describing the slip taking place at the inter-

face is necessary. However, since the scale of the problems considered

in the present paper is relatively large (at a scale of micrometers), we

assume the non-slip condition to be valid. For the ion concentration,

no flux goes across the boundary, which is formulated simply as

njJj = 0, at y = ±h(x), (9)

where n is the unit normal vector pointing inward to the fluid region.

If we substitute Eq. (4) into Eq. (9), then we have

−ezmDm

kBT
Cmnj

∂φ

∂x j

− Dmnj

∂Cm

∂x j

+ Cmnju j = 0. (10)

This form of the Neumann-type boundary condition seems rather

complex to implement in the lattice Boltzmann method. However,

with the scheme for the Nernst–Planck model described in the next

section we can impose this condition in a simple manner. Finally, the

boundary conditions for the electrical potential are given as the fol-

lowing Neumann-type condition:

−εnj

∂φ

∂x j

= σ , at y = ±h(x). (11)
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