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a b s t r a c t

Vortex-induced vibrations (VIV) phenomena related to self-excited energy harvesters consisting of square

cylinders have been investigated numerically by using the BGK incompressible lattice Boltzmann method.

In the present work, such a harvester is placed inside a channel flow and is allowed to oscillate without a

structural restoring force in a direction normal to the flow. Currently the half-way bounce-back boundary and

interpolations method are being used to model the moving boundary. The numerical results of the periodical

and non-periodical oscillations and the frequency content of the longitudinal and lateral forces acting on the

square cross section harvester are discussed in detail. The numerical technique was validated by computing

the flow around a fixed cylinder. The results are compared favorably with the results obtained by classical

CFD methods.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Vortex-induced vibration (VIV) is a self-sustained vibration, gen-

erally appeared in nature and in phenomena related to flag flutter-

ing, cable swing, and tree waving in the wind. Understanding the

physical mechanisms and interactions in VIV is important to sev-

eral industries, such as offshore structures, bridges, submarines, heat

exchangers and other applications. Recently, VIV is used in a fam-

ily of energy harvesters consisting of a cantilever beam with a bluff

body at its tip [1–3]. In energy harvesting, the self-sustained vibra-

tion of the oscillator is expected to be periodic for a stable energy

transfer.

There are many published works in the literatures on ex-

perimental and numerical investigations of the VIV phenomena

[4–11]. Due to the complex, non-linear interactions between the

structural motions and the vortex-shedding [4], it is very difficult

to predict the vortex-induced vibration in modeling the flow field,

structural vibration and fluid–structure interaction [12]. In most of

previous works the traditional CFD numerical methods are used to

solve the VIV problems. Bishop and Hassan [13] studied the ef-

fect of the transverse force to the oscillation of the circular cylin-

der and found that a jump phase occurs when the oscillation fre-

quency approached the shedding frequency. The so called “lock-in”
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phenomenon is traditionally referred to the resonance between the

flow and structure [9], i.e. the frequency superposition of the

Strouhal shedding and structure vibration, and it is generally as-

sociated with VIV. In addition, there always exists a frequency

doubling relationship between cross-flow and in-line response un-

der lock-in conditions [4]. Meneghini and Bearman [14] adopted

a discrete vortex method incorporating viscous diffusion to simu-

late the flow about an oscillating circular cylinder and an asym-

metric mode of shedding was observed. Vortex shedding from a

transversely oscillating circular cylinder in a uniform flow has been

studied by solving the two-dimensional unsteady Navier–Stokes

equations with a primitive-variable formulation by Lu and Dalton

[15].

Similar to above mentioned circular cylinder cases, the VIV involv-

ing square cylinder was also studied by experiments [6,7,16] and nu-

merical simulations [10,11]. The effects of axial applied tension on

the vibration properties during vortex-induced vibration of a hori-

zontally mounted square cylinder was studied experimentally in the

Reynolds number range (Re = 1000” − ”16, 000) [6]. Experiments fo-

cusing on the effects of the angle of attack, relatively to the incom-

ing flow of a square cylinder on the cylinder’s flow-induced vibration

were performed by András Nemes et al. [7]. Alam et al. [16] performed

a comprehensive experimental study of the wake of two side-by-side

square cylinders. The wake of the fixed square cylinder was simu-

lated numerically by using a standard centered and second-order-

accurate finite-difference scheme on a staggered Cartesian mesh

to solve the incompressible, two-dimensional N–S equations [10].
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In this study, the inversion phenomenon of the vortex street and its

position characteristics were discussed in detail. Generally, the cylin-

der oscillation is due to the alternative change of the sign of forces (i.e.

lift force) due to the vortex shedding in the wake, which is dominated

by the incoming flow velocity or Reynolds number. That is to say,

self-sustained oscillation is related directly to the vortex shedding.

Sánchez-sanz and Velazquez [11] used the mixed implicit-explicit

relaxation-based pseudo-compressibility formulation to simulate the

vortex-induced oscillation of a square section cylinder placed in-

side a two-dimensional channel flow. The oscillation modes (pe-

riodic and non-periodic) related to the mass/density ratios of the

cylinder and fluid were discussed in details under a Reynolds range

Re = 50” − ”200. A detailed review of the traditional numerical sim-

ulations about the flow past a cylinder associated with VIV can be

found in references [5,8,17,18].

The lattice Boltzmann method (LBM) is an effective alternative

of the traditional CFD with some advantages. There are few numer-

ical investigations on VIV by using LBM [19–21]. Breuer et al. [19]

investigated the laminar flow past a fixed square cylinder by using

lattice Boltzmann and finite-volume method under the Reynold num-

ber less than 300. Islam et al. [20] used incompressible lattice Boltz-

mann method to studied numerically a uniform flow past a fixed

rectangular cylinder with different aspect ratios. Flow across a row

of transversely oscillating square cylinders was simulated numeri-

cally by using the lattice Boltzmann method with a peculiar process,

which means that the flow is oscillating with respect to the cylinders

by avoiding the actual movement of the cylinders with respect to the

computational grid [21].

In the present work, VIV phenomena of the flow around a rigid-

body cylinder (oscillator) with square section moving in cross-flow

direction in the channel flow were simulated numerically by using

BGK incompressible lattice Boltzmann method. The half-way bounce-

back boundary and interpolations method were used to process the

square cylinder motion relative to the computational grid. In particu-

lar, we have investigated the flow around a square cylinder under-

going forced oscillations in a Poiseuille flow. Three different cases

were considered in our investigations. First, the case of a stationary

square cylinder in a Poiseuille flow was investigated with the objec-

tive to validate the numerical method; second the case of a moving

square cylinder in a quiescent flow was computed to establish the

self-induced vortex interaction by the motion of the cylinder in the

absence of cross Poiseuille flow. Last the case of a moving square

cylinder inside a Poiseuille flow was investigated and compared with

existing results.

2. Numerical methods

2.1. LBM method

The lattice Boltzmann equation with Bhatnagar–Gross–Krook

(BGK) single relaxation time (SRT) is used in current research

fi(t + δt , x + eiδt ) = fi(t, x) + 1

τ
( f eq

i
(t, x) − fi(t, x)),

i = 0, 1, 2 . . . 8 (1)

f eq
i

( f ) = Heq
i

(ρ( f ), u( f ))

Here, fi(t, x) is the mesoscopic variable, indicating the probability

density distribution of i-component of the discretization velocity

space at time t and position x. The discrete time-step δt is set equal to

unity as well as the lattice spacing δx (δt = δx = 1). The equilibrium

values, H
eq
i

, are obtained through the following:

Heq
i

(ρ, u) = wiρ

(
1 + c−2

s ei · u + c−4
s

2
(|ei · u|2 − c2

s u2)

)
(2)

where, u and ρ is the fluid velocity and density. ei is the velocity com-

ponent in the lattice velocity space, which is dependent on the veloc-

ity discretization model, for D2Q9 model (as shown in Fig. 1)

ei =

⎧⎪⎨
⎪⎩

0 for i = 0

c(cos((i − 1)π/4), sin((i − 1)π/4)) for i = 1” − ”4
√

2c(cos((i − 1)π/4), sin((i − 1)π/4)) otherwise.

Accordingly weighted parameters wi are given as

wi =

⎧⎨
⎩

4/9 for i = 0

1/9 for i = 1” − ”4

1/36 otherwise.

The macroscopic variables, i.e., the fluid density and momentum

are

ρ = �i fi = �i f eq
i

, ρu = �iei fi = �iei f eq
i

(3)

And the relationship of the viscous and relaxation time is

ν = (2/ζ − 1)δx · c/6 (4)

Here, ζ ≡ δt/τ, c = δx/δt = 1. The pressure was obtained through the

equation of state: p = c2
s ρ , here cs is the sound speed, in D2Q9 model,

cs = c/
√

3. That is to say the density is related to the pressure even if

the flow is incompressible, i.e., the compressibility effects are embed-

ded in LBM. To reduce or to eliminate the compressible effect, we use

the He–Luo model [22], in which the equilibrium values are calcu-

lated through

Heq
i

(ρ, u) = wi

(
ρ + ρ0

(
c−2

s ei · u + c−4
s

2
(|ei · u|2 − c2

s u2)

))
(5)

Here, ρ0 is the constant density. ρ is only related to pressure p = c2
s ρ

and the velocity is ρ0u = �iei fi . An additional condition must be sat-

isfied [22],

|u| � cs, T � L/cs

where, T and L is time and length scale of the macroscopic change,

respectively.

2.2. Boundary conditions

The computational domain and boundary conditions are shown

as in Fig. 2. The left boundary is velocity specified inflow bound-

ary condition [23] with Poiseuille flow profile, and the right outflow

boundary is zero-extrapolation boundary, the top and bottom bound-

aries are solid boundary by using the on-site bounceback boundary

method. The moving boundaries of the cylinder are processed by us-

ing the interpolations method recommended by [24]. For the velocity

specified boundary (in Fig. 3 a), the relationship between the popula-

tions and macrovariables are there,

Fig. 1. Velocity components of the D2Q9 model.
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