
Development of parallel direct simulation Monte Carlo method
using a cut-cell Cartesian grid on a single graphics processor

M.-C. Lo a, C.-C. Su a, J.-S. Wu a,⇑, F.-A. Kuo a,b

a Department of Mechanical Engineering, National Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu 30010, Taiwan
b National Center for High-Performance Computing, 7 R&D Road, Hsinchu 30076, Taiwan

a r t i c l e i n f o

Article history:
Received 13 December 2013
Received in revised form 21 May 2014
Accepted 3 June 2014
Available online 18 June 2014

Keywords:
DSMC
GPU
Cut-cell
Variable time-step
Transient adaptive sub-cell

a b s t r a c t

This study developed a parallel two-dimensional direct simulation Monte Carlo (DSMC) method using a
cut-cell Cartesian grid for treating geometrically complex objects using a single graphics processing unit
(GPU). Transient adaptive sub-cell (TAS) and variable time-step (VTS) approaches were implemented to
reduce computation time without a loss in accuracy. The proposed method was validated using two
benchmarks: 2D hypersonic flow of nitrogen over a ramp and 2D hypersonic flow of argon around a cyl-
inder using various free-stream Knudsen numbers. We also detailed the influence of TAS and VTS on com-
putational accuracy and efficiency. Our results demonstrate the efficacy of using TAS in combination with
VTS in reducing computation times by more than 10�. Compared to the throughput of a single core Intel
CPU, the proposed approach using a single GPU enables a 13–35� increase in speed, which varies accord-
ing to the size of the problem and type of GPU used in the simulation. Finally, the transition from regular
reflection to Mach reflection for supersonic flow through a channel was simulated to demonstrate the
efficacy of the proposed approach in reproducing flow fields in challenging problems.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Since its invention by Bird [1] half a century ago, the direct sim-
ulation Monte Carlo (DSMC) method, which is based on particle
collision kinetics, has become a common tool for the simulation
of rarefied and non-equilibrium gas dynamics. It has been mathe-
matically proven that the DSMC method is equivalent to solving
the Boltzmann equation, should the number of simulation particles
become sufficiently large [2,3]. The reason for not directly solving
the integral–differential Boltzmann equation is the fact that it
includes seven independent variables (time, positions, and veloci-
ties), which make this problem nearly intractable, even using the
most powerful supercomputer. The problem is further exacerbated
by the complex collision integral. Nonetheless, DSMC computation
is far more demanding than solving the continuum Navier–Stokes
equation, particularly when dealing with flow in the transitional or
near-continuum regime. Thus, determining the means to reduce
computational complexity remains an important research topic
with numerous implications pertaining to rarefied gas dynamics.

In the past, it was common to apply physical domain decompo-
sition using multiple CPUs in a distributed-memory machine (e.g.,
PC cluster) for the parallel computing of DSMC [e.g., 4–6]. In

implementations using multiple instructions multiple data
(MIMD), each processor works within its own domain using the
standard DSMC method and communicates with other processors
using a message passing interface (MPI) when particles move
across the inter-processor boundaries. Graphics processing units
(GPUs) have become an alternative computational platform for
the parallel computing of scientific data, providing a high capabil-
ity/price ratio when used within the single instruction multiple
data (SIMD) paradigm. DSMC has a highly localized numerical
scheme, which is a basic requirement for efficient computation
on GPUs.

Very few studies have investigated DSMC simulation using GPU
computing [7–9]. Su et al. [7] proposed a parallel two-dimensional
DSMC method using a Cartesian structured grid on multiple GPUs
for the simulation of rarefied gas dynamics. Compared to a single
CPU core (Intel Xeon X5670, 2.93 GHz, 12 M Cache), they increased
the speed of computation by 15� using a single GPU (Nvidia
M2070, 6 GB DDR5 global memory) and by 185� using 16 GPUs
in the computation of a large-scale near-continuum flow problem.
These results demonstrated the impressive capability/price ratio of
this approach. Despite the efficiency of Cartesian grids in tracking
particles, treating flow problems using objects with a complex
geometry can be exceedingly difficult. One alternative approach
is to use an unstructured grid similar to that proposed by Wu
and Lian [10] and Boyd [11]. However, two problems can arise

http://dx.doi.org/10.1016/j.compfluid.2014.06.003
0045-7930/� 2014 Elsevier Ltd. All rights reserved.

⇑ Corresponding author. Tel.: +886 3 573 1693; fax: +886 3 611 0023.
E-mail address: chongsin@faculty.nctu.edu.tw (J.-S. Wu).

Computers & Fluids 101 (2014) 114–125

Contents lists available at ScienceDirect

Computers & Fluids

journal homepage: www.elsevier .com/locate /compfluid

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2014.06.003&domain=pdf
http://dx.doi.org/10.1016/j.compfluid.2014.06.003
mailto:chongsin@faculty.nctu.edu.tw
http://dx.doi.org/10.1016/j.compfluid.2014.06.003
http://www.sciencedirect.com/science/journal/00457930
http://www.elsevier.com/locate/compfluid


from the use of an unstructured grid. First, the efficiency of particle
tracking is lower than that of a structured grid. Second porting a
DSMC algorithm within a GPU environment using unstructured
data can be very challenging. To overcome these difficulties, this
study focuses on the cut-cell approach to treating geometrically
complex objects in a Cartesian grid.

The quality of DSMC simulation strongly depends upon collision
quality, which can be quantified using the ‘‘merit of collision’’,
defined as the ratio of averaged binary collision distance to the
local mean free path. Achieving a physically correct collision pro-
cess requires that the merit of collision be less than unity [12].
Transient adaptive sub-cell (TAS) [13,14] and variable time-step
(VTS) [15,16] approaches can be applied to improve collision qual-
ity and reduce the number of iterations required to reach a steady
state. Thus, this study sought to apply the TAS and VTS algorithms
in conjunction with the cut-cell approach for DSMC simulation
using GPU computing. Two benchmark problems (hypersonic
nitrogen flow past a ramp and hypersonic argon flow past a cylin-
der) were employed to evaluate the runtime efficiency associated
with the modelling of rarefied gas dynamics and geometrically
complex objects. The speedup of DSMC using various types of
GPU cards is also investigated and compared. The high fidelity of
the proposed single-GPU DSMC code was demonstrated by repro-
ducing the transition from a regular reflection to a Mach reflection
associated with supersonic flow through a channel.

2. Numerical method

2.1. Standard DSMC method

The direct simulation Monte Carlo method solves the
Boltzmann equation based purely on particle collision kinetics sta-
tistically. One of the basic assumptions of the DSMC method is the
decoupling of the movement and collisions of particles. The details
of the DSMC method can be found in [1]. Briefly, the DSMC method
involves initialization, particle movement, indexing, collisions, and
sampling. In the initialization phase, the velocity of particles is
sampled from an equilibrium Maxwell–Boltzmann distribution
and the spatial position of the particles is randomly distributed
in each cell. In the particle movement phase, all particles move
according to their current phase-space states (3 positions and 3
velocities). The particles are relocated to their new spatial locations
either through free flight or interaction with various types of walls
(e.g., diffusive, specular, absorptive). Particles are removed when
their new locations lie outside the computational domain. In the
indexing phase, all particles are indexed with their resident cells
to facilitate the efficient selection of particles during the collision
phase. In the collision phase, two particles in each cell are ran-
domly selected and the determination of whether they collide is
probabilistic. In the event of a collision, the post-collision velocities
are calculated according to the type of collision, such as elastic col-
lision, translational–rotational energy transfer, translational–
vibrational energy transfer, and reactive energy transfer. Prior to
the selection of collision pairs in each cell during each time step,
it is necessary that the maximal number of collision pairs be
selected (e.g., No Time Counter, NTC [1]). In the sampling phase,
the post-collision velocities are sampled (or accumulated) in order
to calculate the macroscopic properties. With the exception of
initialization, all of these procedures are repeated until the sample
size is large enough.

2.2. Parallel DSMC on a single GPU

As shown in Fig. 1, this study adopted a nearly all-device (GPU)
computational approach, in which all major procedures of the

DSMC method, including particle movement, indexing, collision
and sampling, are performed within the GPU. CUDA [17] is used
to accelerate the DSMC-related simulation components as well as
to transfer data between the CPU (host) memory and the GPU
(device) global memory. Taking advantage of the forward architec-
ture requires adaption of the original DSMC method to enable effi-
cient all-device computation. This study adopted the algorithms
proposed by Su et al. [7] for this function. Those developments
briefly detailed in the following and the cut-cell approach, the
TAS, and the VTS algorithms are outlined in a later section.

In the initialization phase, this study used the CUDA API function
cudaGetDeviceCount() [18] to obtain the number of GPU devices
available and cudaSetDevice() [18] to assign a GPU for computation
(in the current study, only one GPU was employed). Input data and
initial states were loaded into the memory on the host (CPU). We
then used the CUDA API function cudaMemcpy() [18] to transfer
the data (particle and cell) from host to the global memory of the
device. The main procedures of the DSMC simulation (particle move-
ment, indexing, collisions, and sampling), were then performed on
the GPU. In the particle movement phase, Np/Nthread + 1 particles
were tracked using a thread, in which Np is the total number of sim-
ulated particles and Nthread is the number of threads employed in
the GPU device. Each thread reads/writes particle data from/to the
global memory of the GPU device. The particle indexing phase of
the computation is similar to the DSMC implementation in [1]. This
study employed the Software Development Kit (SDK) of CUDA, scan-
LargeArray [18] to scan the data elements of large arrays contained
within the global memory. This function was used to enable the effi-
cient indexing of particles. In the collision phase, we employed a dif-
ferent parallelization philosophy in which all particle collisions
within a cell are handled by a single thread, thereby allowing the
efficient recollection of data since all of the data is coalesced. The
speed of the sampling phase is increased by using the much faster
shared memory in the GPU [17] for the temporary storage of sam-
pling results. Upon the completion of sampling for several cells,
the sampled data is transferred from the shared global memory.

2.3. Cut-cell approach

The cut-cell approach includes three kinds of computational
cells for simulation, including fluid cells, solid cells, and cut cells,
as shown in Fig. 2a. Fluid cells and solid cells are treated as usual
in DSMC simulation; however, cut cells require special treatment.
Fig. 2b illustrates the three basic types of cut cells in the
two-dimensional domain, in which Types A, B, and C contain one,
two, and three grid points in the solid body, respectively. The effi-
cient implementation of the DSMC method requires an algorithm
for the identification of cut cell type. This study employed the
crossing number method [19], as outlined in the following.

If a solid body (or a polygon) is simple (i.e., no self-intersec-
tions), the crossing number method (also referred to as the
even–odd rule) can be used to determine whether a point is
included in the 2D solid body. This method assumes that a point
is inside the polygon if an odd number of crossings occur with
the edges of the polygon when a line is drawn from this point in
an arbitrary direction; otherwise, it lies outside the polygon. In
addition, the validity of this method was proven using the ‘‘Jordan
Curve Theorem’’, which states that a simple closed curve divides a
2D plane into exactly 2 connected components: one bounded
‘‘inside’’ and one unbounded ‘‘outside’’. In the current study, we
employed a more straightforward crossing number algorithm. This
enables the selection of one horizontal ray (parallel to x-axis) and
one vertical ray (parallel to y-axis), extending to the right and top
of the grid, respectively. The use of these rays enables one to calcu-
late the number and locations of the points intersecting with the
solid bodies.

M.-C. Lo et al. / Computers & Fluids 101 (2014) 114–125 115



Download English Version:

https://daneshyari.com/en/article/768135

Download Persian Version:

https://daneshyari.com/article/768135

Daneshyari.com

https://daneshyari.com/en/article/768135
https://daneshyari.com/article/768135
https://daneshyari.com

