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a b s t r a c t

Within the context of the simple classical linear calibration procedure (regression of y on x), here it is
shown how a distinction between the distributions of the observed dependent variable (yobs) and the
calculated (fitted) one (ycalc) leads to the following counterintuitive approach: in order to get the
independent x values with lesser systematic deviations, do not identify as direct inputs in the classical
calibration equation the new y observed ones (experimentally acquired), but instead the transformed
ones by means of a regression towards the mean effect correction. It is shown how the conjunction of
both steps, i.e., first the transformation of observed values and then the ulterior use in the classical
calibration equation, corresponds to an operation totally equivalent to the direct implementation of the
inverse calibration equation (regression of x on y in a single step). The reasoning given here explains in
a simple manner why the inverse calibration numerically performs usually better for predictions
of interpolated x values. Results are accompanied with the analysis of both theoretical and
experimental data.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

In classical calibration, the dependent variable yobs (for
instance, an experimentally acquired absorbance or signal) is
regressed on the independent one xobs (usually a concentration).
It is assumed that the dependent variable has a statistical uncer-
tainty and that the errors are normally distributed around the true
values with constant variance, whereas xobs is error-free or, at
least, it has a substantial lesser error than the dependent variable.
The regression of n (xobs,yobs) data points provides with the
classical linear model useful to obtain the expected value for yobs
variable from the knowledge of xobs

EðyobsjxobsÞ ¼ ycalc ¼ aþ b xobs ð1Þ

being a and b the estimators of the true unknown parameters α
and β which express the underlying relationship among the x and
y variables (e.g., Beer–Lambert law). The model is also character-
ized by the determination coefficient r2 indicating the fraction of
data variance explained by Eq. (1). It has not to be understood that
previous Eq. (1) stands for the relationship yobs¼a+bxobs. The
observed yobs variable and the calculated one, ycalc, are not
interchangeable entities. This article concerns about this
distinction.

On the other side, the linear inverse calibration consists into
regress the xobs variable on yobs, usually disregarding which one
bears errors or which one is a random independent error-free

variable, thus violating basic assumptions underlying least squares
regression [1]. The inverse model obtained with the same previous
set of n available points is of the form

EðxobsjyobsÞ ¼ xcalc ¼ a’ þ b’yobs ð2Þ
Models (1) and (2) are not homologous nor interchangeable,

but are related in such a way that the knowledge of a model will
automatically lead to the other equation (see next paragraph). The
two equations share the same determination coefficient and, as
much as the determination coefficient tends to 1, both equations
will tend to be the same, minimizing the difference between the
classical and inverse procedures [2].

The numerical relationship between models (1) and
(2) obtained from the same set of n points is very simple [3]: the
product of the slopes b and b′ is r2, and both equations are satisfied
by the data points center of mass (x; y). Note that, for the n points
data set, ycalc ¼ yobs≡y, as it is also well known. Consequently, once
the regression parameters a, b and r are known from the classical
fitting (1), the ones appearing in (2) can be obtained either by the
inverse regression procedure or directly by the following relation-
ships:

a0 ¼ ð1−r2Þy−a
b

b0 ¼ r2
b

8<
: ð3Þ

Conversely, a similar transformation exists in order to infer the
equation parameters of (1) from the previous knowledge of those
of (2). We will call here conjugated a couple of regression
equations (the classical and the inverse) arising from the same
set of fitted points and linked by the aforementioned rule (3).
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Within the classical approach to calibration, Eq. (1) serves to
estimate the x of an unknown sample from its measured yobs value,
the one provided by the experiment. Along this process, the
acquired variable yobs is implicitly identified as being the calcu-
lated variable ycalc. That's a mistake because doing that it is
incorrectly assumed that, once one instance of yobs is known, the
corresponding expected value for ycalc is yobs itself. Below it will be
shown how the expression E(ycalc|yobs)¼yobs does not hold in
general. In spite of this, the two-step process usually followed to
obtain x from the knowledge of yobs is described by the codification

1:
2:

yobs-ycalc
ðycalc−aÞ=b-xobs

(
ð4Þ

where in step (4.1) the erroneous identification E(ycalc|yobs)¼yobs is
being assumed, and then x is derived isolating from (1) by means of
step (4.2).

The process of inverse calibration, i.e., to rely on Eq. (2), in some
circumstances performs better for predictions of x of new known
experimental y values [4–9]. This constitutes a statistical trend but
not a general situation because the performance depends on the
kind of data we are manipulating, on the distribution of x variable,
on the number of replicates, on the distance of the predicted
points from the mean x and y values and, among others, on the
followed criteria to define superiority of a method. Here, by better
we mean that the sum of quadratic errors (mean squared errors,
MSE) between obtained x values and the actual ones is lesser. In
many practical situations, inverse approach performs better for
interpolations of x values within the explored interval [4]. This
feature was noticed early and discussed in the context of Mon-
tecarlo simulations [5,6] and the interest continued during the
time until now (see for instance references in [8]). Investigations
have been carried on dealing with many aspects of this situation,
as for instance the asymptotic performance of the inverse calibra-
tion for n-∞ [1,9] or showing that the inverse procedure if favored
respect to the classical one even if the number of data point
samples is small [8]. Shukla [7] shows that, despite one method is
not in all the cases superior to the other, the inverse approach
gives lesser MSE when a single value of y is available and the
inferred value of x lies near the mean of the population sample (e.
g. for interpolations). Modern approaches take into account a
balance of practical factors and favor the inverse approach respect
to the classical one [8].

This paper exposes an elemental relationship which links
inverse and classical procedures and that explains in a simple
manner why many times inverse calibration performs better than
the classical one when inferring interpolated values of x. The
reasoning deals with the distinction which has to be made
between calculated y values (ycalc) and observed ones (yobs). The
key idea is that the knowledge of a particular value of the variable
yobs has not to be directly identified with the same numerical value
of the variable ycalc. This seems counterintuitive because, accord-
ing to (4), the usual classical approach consists into get yobs values
from the population sample and identify them with ycalc ones by
plugging the former numerical value directly into Eq. (1) to get x.

2. Results

The exposition below is based on a general theorem described
within the multiple linear regression framework [10,11] and is
related to the regression towards the mean effect [12]. The
theorem applies for any arbitrary and finite data set disregarding
particular statistical distributions of x and y variables and their
correlation values. The exposition will be initially illustrated using
an arbitrary artificial data set. In order to improve the visualization
of some features, the artificial set shows a small correlation value

despite this is not the case in general calibration or analytical
purposes. Afterwards, data coming from real experiments will be
also analyzed.

2.1. Artificial data set

An artificial large set of n¼3000 (xobs,yobs) sample points has
been generated exhibiting a low correlation value (r2¼0.80).
Without loose of generality, the low correlation value and other
data parameters have been chosen in order to made graphically
evident the explored features. The variable x is normally distrib-
uted (μ¼9/2, s¼7/6) and the y data points obey to the inner (true)
linear relationship y¼1+2x (i.e., α¼1 and β¼2), but modified by a
Gaussian noise error function having mean zero and a fixed
arbitrary variance (1.3535) which leads to the aforementioned
coefficient of determination. Once the classical linear regression
equation is calculated, the fitting line ycalc¼0.995+2.00xobs is
obtained, which stands for Eq. (1). Fig. 1 shows the representation
of the calculated values (ycalc) against the observed ones (yobs). The
diagonal solid line corresponds to the equation bisector y¼x. It has
not to be assumed that the cloud of points depicted in Fig. 1 is
symmetrically distributed along the bisector equation. Sometimes
that's the erroneous underlying idea which leads to apply the
procedure (4). The assumption that the numerical values of the
variables yobs and ycalc are interchangeable is incorrect.

Fig. 1 reveals the evidence of a regression towards the mean
effect [12] due to an artifact of the linear model construction (in
fact, due to the asymmetry in x and y variables treatment). As it
can be seen, the point cloud is not symmetrically distributed along
the bisector line but rotated around the point cloud center of mass.
As a consequence, for a given experimental value, for instance the
observation yobs¼15 depicted in Figure 1, the expected corre-
sponding ycalc one is not the same number in general (unless for
the particular cases for which r2¼1 or yobs coincides with the
sample mean value y). In Fig. 1 it is also shown the distribution of
ycalc values attached to the particular observed result yobs¼15. It is
graphically revealed how from the knowledge that the value
yobs¼15 has been experimentally acquired, the corresponding
mean (expected) value of variable ycalc is distinct than 15. This
artifact is overlooked many times. The expected ycalc value is
depicted at the center of the distribution curve and lies in the
diagonal dashed line. Fig. 1 reveals that, within the context of

Fig. 1. Representation of calculated y values (ycalc) by means of the classical
regression Eq. (1) against the original observed (experimental) ones (yobs). Solid
diagonal line is the quadrant bisector whereas the dashed diagonal one corre-
sponds to the linear regression of calculated values on the observed ones. The other
dashed lines and the Gaussian show how the expected ycalc value attached to an
observed one (yobs¼15) are not coincident.
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