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a b s t r a c t

We present a fully conservative, skew-symmetric finite difference scheme on transformed grids. The
skew-symmetry preserves the kinetic energy by first principles, simultaneously avoiding a central insta-
bility mechanism and numerical damping. In contrast to other skew-symmetric schemes no special aver-
aging procedures are needed. Instead, the scheme builds purely on point-wise operations and derivatives.
Any explicit and central derivative can be used, permitting high order and great freedom to optimize the
scheme otherwise. This also allows the simple adaption of existing finite difference schemes to improve
their stability and damping properties. Numerical examples covering acoustic phenomena and shocks are
presented.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Flows featuring shocks and acoustics are common in engineer-
ing applications. Examples are the sound generation of supersonic
jets, noise generation in transonic flight or shock buffeting on an
airfoil, where one possible mechanism is the interaction of sound
waves from the trailing edge with the standing shock on the airfoil.

Simulations of such configurations are numerically challenging
as the correct and stable simulation of shocks and the faithful cal-
culation of acoustics have different, and in standard approaches,
contradictory requirements. Shocks, on the one hand, are described
by the Rankine–Hugoniot conditions, which build directly on the
conservation laws. Conservation of mass, momentum and total
energy is a prerequisite to guarantee a correct shock treatment.
Such conserving schemes are usually finite volume (FV) schemes.

Acoustics, on the other hand, are propagating disturbances.
They experience very low damping and travel long distances with-
out noticeable energy loss in practice. When the amplitude is small
the dispersion is also very small. To preserve these properties in a
numerical simulation, schemes with very low (numerical) damp-
ing and low dispersion are needed, so that high-order, dispersion
optimized finite difference (FD) schemes are mostly used.

In contrasto finite volume, most finite difference schemes are
only approximately conserving, becoming worse, where flow vari-
ables are rapidly changing. Thus, in shocks, where conservation is
most desired they become unreliable. Indeed, it is well known that

FD schemes can totally fail to describe shocks. On the other hand
FV usually utilize upwind schemes for stability reasons, leading
to high artificial damping. Even the optimized schemes hardly
reach the quality of FD schemes for acoustics simulations. Thus a
conservative scheme with low damping is desirable.

To understand the key point of a low damping scheme consider
the momentum equation for the ath velocity component,
(a; b 2 1;2;3), u ¼ ðu1;u2;u3Þt .

@t.ua þ @xb .ubua
� �

þ @xa p ¼ @xbsab:

As usual p is the pressure and sab ¼ lð@xa ub þ @xb
uaÞþ

ðld � l2=3Þdab@xc uc the friction. Summing convention is assumed.
From this the equation for the kinetic energy Ekin ¼ .uaua=2 is
derived with the help of the mass conservation1 as

@t.uaua=2þ @xb
.ubuaua=2
� �

¼ �ua@xa pþ ua@xb
sab:

Only pressure work and friction changes the kinetic energy. The
transport of the kinetic energy is in contrast strictly conservative.
This physical property is easily destroyed in numerical schemes.
Up-winding destroys the conservativity of the transport by intro-
ducing artificial damping; but even a central derivative usually does
not exactly preserve the kinetic energy. Thus a transport term,
which conserves the kinetic energy is the key to an undamped sim-
ulation. It should be pointed out, that an artificial damping does not
destroy the conservation of the total energy in FV, as by construction
the lost kinetic energy is balanced by an increased internal energy.
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But the kinetic energy of, say, sound waves is irreversible trans-
formed to internal energy, thus to heat.

The correct treatment of the kinetic energy is the focus of skew-
symmetric schemes. The skew symmetric schemes were first intro-
duced by Feiereisen et al. [1] and Tadmor [2]. While Feiereisen was
focusing on numerical simulations Tadmor concentrated on ana-
lytical aspects. The discretization of the non-linear transport term
is chosen, so that the implied term for the equation of the kinetic
energy is strictly conservative. This is achieved by formulating
the transport term as a skew-symmetric operator, which implies
the conservation of kinetic energy by first principles: the change
of kinetic energy is calculated from a quadratic form of this trans-
port term, which is zero, as all quadratic forms of skew-symmetric
matrices are zero. The main challenge then is to preserve the con-
servation of the mass, momentum and total energy; especially the
conservation of momentum is far from obvious and might be vio-
lated. To this end it has to be possible to rewrite the discrete skew-
symmetric operator into a term with the telescoping sum property,
typically to a discrete form of the divergence.

The classical ansatz to ensure this telescoping sum property of
the skew-symmetric operator is to use skillful averaging of differ-
ent variables. This was successfully applied by Morinishi in [3] and
became standard in this area. This procedure is by no means the
only way to obtain skew-symmetry and the telescoping sum prop-
erty; we find that no such averaging is necessary. A straightfor-
ward and consistent discretization is sufficient. This not only
leads to simpler expressions and to simple proofs of all claimed
properties, but it also allows to rewrite existing FD codes with min-
imal effort to a skew-symmetric form, by simply changing the spa-
tial discretization, yielding good stability properties and low
numerical damping. For strictly conservative schemes the time-
stepping has to be changed accordingly; a dedicated paper about
different time integration is submitted, [4]. This paper also shows
how a conserved norm can be constructed, which implies stability.

Two points related with stability should be considered. First,
stability does not imply that the solution is physical. Indeed strong
and unwanted oscillations do appear if the chosen dissipation is
too small for a given discontinuity or for strong grid stretching.
Here, numerical damping has to be added. Still we prefer adding
dissipation explicitly over creating dissipation by the scheme itself,
as this allows to control the amount of dissipation and tailor it for a
given situation. This also allows to explicitly define the damping,
which can be helpful for turbulence modeling. Secondly, one can
only hope for stability as long as one can solve the implicit time
stepping. This is in our experience a minor problem for moderate
time steps even for solutions which are unphysical due to strong
oscillations.

In contrast to the usual averaging procedure, the structure
derived in this paper builds on matrices and makes little reference
on the details of the stencil. Instead, abstract properties, namely
the skew-symmetry and the telescoping sum property are
assumed, which are fulfilled by basically all central and in compu-
tational space equidistant derivatives. These properties permit one
to choose a derivative to one’s needs, be it any high order or wave-
number optimized derivative. High order is obtained by using a
standard (explicit) high order derivative. We make use of this free-
dom by choosing a derivative with the so called summation by
parts property, [5], which allows clean and flexible boundary con-
ditions without using ghost points.

For practical calculation curvilinear grids are essential. It is
understood, [6], that a grid transformation to a computational
space is a suitable way to preserve the correct structure on curvi-
linear grids. To our knowledge the first to obtain this for compress-
ible flows was Kok, [7]; the authors presented a similar procedure
for our FD scheme in [8,9]. During submission we became aware of
[10], which builds on similar ideas and extends it even to moving

grids. Also [11] and more recently, [12] investigated skew symmet-
ric schemes on curvilinear grids.

A third way to derive skew symmetric-schemes is the Galerkin
ansatz. Products in the function space can be approximated leading
to a numerically effective scheme, see e.g. Gassner [13]. The
approximation leads a skew-symmetric scheme for the Burgers
equation with similar point-wise products and derivatives as
derived in this paper; the summation by parts property which is
a choice in this paper occurs naturally in the work by Gassner.

This paper is organized as follows: first we introduce the rewrit-
ing and our way of spatial discretization of the Navier–Stokes
equations in one dimension in Section 2. Then we derive the
three-dimensional equations, introduce curvilinear grids and dis-
cretize in Section 3. A time discretization which generalizes the
scheme of Morinishi [14] and Subbareddy et al. [15] is derived in
Section 4. Boundaries are discussed in Section 5. We close with
some numerical examples in Section 6. In the appendix we first
compare our scheme with the standard, averaging approach.
Finally we show by construction, that the FD scheme implies local
and consistent fluxes.

2. The Navier–Stokes equations in one dimension

The Navier–Stokes equations in one dimension are given by

@t.þ @xð.uÞ ¼ 0 ð1Þ
@tð.uÞ þ @xð.u2Þ þ @xp ¼ @xs ð2Þ
@tð.eþ .u2=2Þ þ @x .uðeþ p=.þ u2=2Þ

� �
¼ @xus� @x/: ð3Þ

They describe mass, momentum and energy conservation. In the
following the internal energy of the ideal gas e ¼ ðp=.Þ=ðc� 1Þ is
assumed with the constant adiabatic index c. Perfect gas is assumed
in many simulations. However, we emphasize that the following
steps concern only the kinetic energy, so that any other equation
of state could be used. The friction in one dimension is s ¼ l@xu
with l the viscosity and / ¼ �k@xT is the heat flux, with the heat
conductivity k.

The transport term in the momentum Eq. (2) given in diver-
gence form, can be rewritten to convective form with help of the
mass conservation as

@tð.uÞ þ @xð.u2Þ ¼ .@tuþ .u@xu:

Adding the divergence and convective form of the momentum
equation we obtain the skew-symmetric form. The Navier–Stokes
equations become

@t.þ @xð.uÞ ¼ 0 ð4Þ
1
2
@t. � þ.@t�ð Þuþ 1

2
@xu. � þu.@x�ð Þuþ @xp ¼ @xs ð5Þ

1
c� 1

@tpþ
c

c� 1
@x upð Þ � u@xp ¼ �u@xsþ @xus� @x/; ð6Þ

where it is understood that the space and time derivatives in the
first two terms of (5) act also on u right of the parentheses. For clar-
ity this is explicitly marked by a dot ‘‘�’’. The kinetic energy was split
off from the energy equation with the help of the momentum equa-
tion by use of the product rule

@tð.u2=2Þ þ @x .uðu2=2Þ
� �

¼ 1
2

uð@t. � þ.@t �Þuþ
1
2

uð@xð.uÞ�

þ ð.uÞ@x�Þu ¼ �u@xpþ u@xs; ð7Þ

leaving just the pressure work �u@xp and a friction term. In the sec-
ond line the skew-symmetric form of the momentum transport
term appears, which underlines its close connection to the kinetic
energy.
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