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a b s t r a c t

Numerical errors form a major source of uncertainty in CFD simulations. This source of error, which is
more significant on unstructured meshes, can be alleviated by a careful choice of discretization scheme.
In the context of finite volume methods, there are many suggestions for the discretization of diffusive
fluxes appearing in viscous flow simulations. In this paper, a wide range of discretization schemes
commonly used for diffusive flux approximation in cell-centered unstructured finite volume solvers
are compared in terms of discretization and truncation errors. In addition, a novel eigenanalysis tool is
proposed to relate these two forms of numerical error to each other and to interpret the error behaviors
obtained by each scheme. The error comparisons are performed on unstructured meshes consisting of
both isotropic and anisotropic triangles. Our results suggest that adding a solution jump term to the
baseline face gradient (determined as the average of two adjacent cell gradients) provides the most
accurate approximation for diffusive fluxes. Also, this term produces sufficient damping to stabilize the
discretization even on highly skewed meshes.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The design of aircraft, from commercial and military transport
to combat airplanes, depends increasingly on the use of computa-
tional fluid dynamics. In particular, computational aerodynamics,
which is concerned with the accurate prediction of airplanes’ force
and moment coefficients, is progressively being used as a practical
tool in the design and optimization of aerodynamic objects.
The numerical simulation of fluid flows is highly affected by the
presence of three error sources: geometry modeling, physical
modeling and numerical errors.

Geometry modeling error is unavoidable in those cases where
complex geometry can not be accurately modeled. In those
circumstances, some minor geometrical features of objects are
ignored to facilitate the numerical procedure. As an example, the
wing root fillet is often neglected in the CFD simulation of fluid
flow around airplanes.

Recent studies have proved that numerical errors are at least
as large as physical modeling errors for computations of the
flow around transport aircraft. Mavriplis [1] carried out a grid
convergence and sensitivity study on a wing-body configuration

which was the subject of the second AIAA Drag Prediction Workshop
(DPW). Physical modeling errors were quantified based on the
sensitivity of computed drag coefficient to the formulation of the
viscous terms and to the turbulence model. The results revealed that
using the thin-layer approximation near the wall rather than solving
the full Navier–Stokes equations affects the drag coefficient by less
than 2%. Likewise, the sensitivity to the turbulence modeling was
examined by varying the way by which the distance from wall is
obtained. The variations in finding this quantity, which is important
in Spalart–Allmaras turbulence model [2], rarely influenced the drag
coefficient. On the other hand, using topologically different grids with
equal resolutions near the trailing edge substantially changed the
solution. These observations reinforced the notion that numerical
errors are still the dominant source of error in most aerodynamic
simulations especially for unstructured flow solvers. In fact, mesh
features – including cell size, anisotropy, shape, connectivity, and
variations between adjacent cells – can have an adverse interaction
with discretization schemes and this interaction may affect the
solution accuracy.

One way to control the accuracy of spatial discretization is
improving the local quality of cells in an unstructured mesh by
node displacement [3]. Although this approach is effective in
reducing the local error in the solution, it negates the advantages
of automatic unstructured mesh generation. However, the need
for precise vertex movement can be alleviated provided that
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careful attention is given to the discretization schemes used to
solve the governing equations.

In the context of finite volume methods, discretization schemes
are divided into two major categories: convective and diffusive
fluxes. Convective fluxes are those that depend only on the solu-
tion at the cell interfaces while diffusive fluxes are dependent upon
the interface solution gradient. While there is a clear consensus
over the use of flux difference splittings for convective fluxes [4],
the choice of diffusive flux discretization and its effect on the
accuracy of the solution is less understood.

Diskin et al. [5] compared the accuracy of a limited number of
the node-centered and cell-centered discretization schemes for
viscous (diffusive) fluxes with the aim of improving turbulent
simulations. This comparison was done on a range of grids from
regular to irregular composed of arbitrary mixtures of triangles
and quadrilaterals. The comparison showed that there is little
difference in accuracy between node-centered schemes and the
best cell-centered schemes, but poorly-designed cell-centered
schemes behave much worse. They also compared the node-
centered and cell-centered unstructured finite volume discretization
schemes for inviscid (convective) fluxes [6]. The schemes, being
different in the least-squares gradient reconstruction, were compared
for a constant coefficient convection equation, linear advection. The
authors concluded that carefully-designed cell-centered schemes
offer the best options for second-order discretization.

Nishikawa [7] introduced a general principle for constructing
diffusion schemes which is applicable to various discretization
methods, including finite volume, residual distribution, discontin-
uous Galerkin, and spectral-volume methods. This principle is
derived based on a hyperbolic relaxation-system model for diffu-
sion problems and results in a damping term, which is essential
for effective high-frequency error damping and, in some cases,
for consistency. He also demonstrated for the first time that the
diffusion schemes with a finite difference term are special cases
of the new damping scheme in the context of finite volume discret-
izations [8]. Moreover, he extended the damping scheme to the
Navier–Stokes equations [9] with an optimal value of the damping
coefficient which has already been obtained by Fourier analysis
and truncation error analysis for scalar problems.

In this paper, we compare the accuracy of common second-
order-accurate discretization schemes for calculating diffusive
fluxes on unstructured meshes. In particular, we consider the
Poisson equation as a model of viscous discretization and we use
variations on the cell-centered finite volume approach. We
describe in Section 2 a wide range of discretization schemes which
differ in how cell gradients are combined to compute a face gradi-
ent; in the presence and form of finite difference correction terms
to the gradient; and in treatment of the discontinuity at faces.

The initial source of numerical errors is the truncation error,
defined as the difference between the continuous PDEs and the
finite discretized equations. Truncation error plays an important
role in error quantification since the truncation error can be used
to estimate the discretization error that occurs during the approx-
imate numerical solution of differential equations. Discretization
error is defined as the difference between the exact solution of gov-
erning equations and the numerically approximated solution.

Roy [10] showed that the discretization error can be directly
related to the truncation error by the error transport equation
where the truncation error serves as a source term to the linearized
system of equation whose solution is the discretization error. For a
linear problem such as Poisson’s equation, it is easy to show that
the linear operator applied to the discretization error in the error
equation is equivalent to the flux Jacobian. In Section 3, an
eigendecomposition paradigm will be introduced where the
truncation error is expanded as a combination of linearly indepen-
dent right eigenvectors of the flux Jacobian matrix. The weights

corresponding to the right eigenvectors differ by the choice of
discretization scheme and influence the error obtained in the
numerical solution. The distribution of these weights are helpful
in explaining how the change of discretization scheme results in
a smaller or larger discretization error.

In Section 4, the method of manufactured solution is used to
compare the discretization and truncation errors produced by
different schemes. The eigenanalysis tool is utilized to explain how
the choice of schemes affects the eigenvalue spectra and weights
associated with the eigendecomposition of error forms. It turns out
that each class of discretization method alters these measures in a
unique pattern that can be interpreted as the method signature.
The accuracy analysis tests are performed on both isotropic and
anisotropic unstructured triangular grids with known properties.

2. Discretization scheme

To discretize the flow equations using the finite volume
method, the governing equations should be recast in fully
conservative form as

@~U
@t
þr �~F ¼ S ð1Þ

in which U denotes the conservative solution vector, F is the flux
vector and S represents the source term vector. Assuming the dis-
cretized physical domain does not change in time and integrating
Eq. (1) over an arbitrary control volume, the 2D finite volume for-
mulation of the governing equations can be written in the form of
a surface and an area integral:
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The right hand side is called the residual which is comprised of the
flux integral representing the spatial discretization corresponding
to each control volume and the control volume average of the
source term. The flux integral is calculated by the Gauss quadrature
along the faces of the control volumes. In the present work, we
consider the cell-centered approach in which the control volumes
are formed as the cells of the mesh. To evaluate the numerical fluxes
at the interfaces, primitive variables must be reconstructed to give a
series expansion of the solution about the cell’s reference point
xi; yið Þ to the desired order of accuracy:
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In Eq. (3), /i is the value of the reconstructed solution and @kþl/i
@xk@yl are

its derivatives at the reference point of control volume i. A second-
order accurate solution can be achieved by knowing the gradient of
the solution at the cell’s reference point and reconstructing a linear
polynomial in the control volume.

Conservation of the mean within a control volume requires
that
1
Ai

Z
Ai
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By expanding the left-hand side of Eq. (4) term by term, one can
easily show that
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