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a b s t r a c t

A new approach for the determination of element concentration profiles in stratified materials by
confocal X-ray fluorescence spectrometry was elaborated. The method was based on a direct deconvolu-
tion of the measured depth-dependent X-ray fluorescence intensity signal with the established response
function of the spectrometer. Since the approach neglects the absorption of primary and secondary
radiation within the probing volume, it is applicable only to low absorbing samples and small probing
volumes. In the proposed approach the deconvolution is performed separately for all detectable elements
and it is followed by the correction of absorption effects. The proposed approach was validated by using
stratified standard samples. The determined elemental profiles were compared with the results obtained
by using existing analytical approaches.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

The confocal micro-beam X-ray fluorescence (confocal μ-XRF)
technique is an analytical tool that enables examination of spatial
distributions of elements within a sample with a resolution
ranging from several up to tens of micrometers. The method was
proposed in 1993 by Gibson and Kumakov [1] and since then many
authors proved its capability for analyzing samples of different
origin, such as pigment layers in art objects or elemental distribu-
tions in biological and environmental samples [2–5]. The techni-
que has been used with spectrometers operated either with
synchrotron radiation or the radiation generated by X-ray tubes
[6–8]. The main advantage of the technique is its capability for
collecting depth resolved elemental information with extremely
high signal to background ratio arising due to the inherently
limited probing volume. The disadvantages include limited sensitiv-
ity for high-Z elements and element-dependent spatial resolution,
both effects linked to the way in which X-rays are transmitted and
reflected in the focusing/collimating optics of the spectrometer.
Nevertheless, for certain applications, the technique was found
very useful as the only one the technique capable of non-invasive
probing the sequence and chemical composition of sample layers.
The comparison of the detection limits and elemental sensitivities

of conventional μ-XRF versus confocal μ-XRF techniques can be
found in [9].

The elaboration of any quantification procedure for confocal
μ-XRF technique is a demanding task since the spatial description
of the matrix effects inside heterogeneous sample is much more
difficult than in the case of conventional XRF. So far a few method
were developed. The first quantification procedure for confocal
μ-XRF was presented in 2004 by Smit et al. [10]. In this work the
fundamental parameter approach assuming a spherical probing
volume was proposed for the investigation of paint layers. A more
detailed model of confocal volume was proposed by Malzer and
Kanngieβer in 2005 [11]. The authors also derived a general
equation for the depth-dependent intensity of X-ray fluorescence
radiation in confocal geometry as well as a calibration procedure.
Mantouvalou et al. [12] used this approach to derive the equa-
tions describing the intensity of X-ray fluorescence radiation
versus the probing depth in multi-layered samples. A Monte
Carlo (MC) based quantification approach was presented and
compared with the existing analytical methodologies by Czyzycki
et al. in two articles [13–14]. Perez et al. [2] applied the model of
Malzer and Kanngieβer [11], neglecting the self-absorption
effects, for the analysis of metals in thin biological samples. Both
the analytical and MC approaches used the parallel beam
approximation [15]. Schoonjans et al. [16] elaborated a funda-
mental parameter method for nano-X-ray fluorescence analysis
of cometary dust particles trapped in silica-based aerogel
returned by NASA's Stardust mission. The analytical approach
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used in our work was based on the initial equation proposed
originally by Malzer and Kanngieβer in [11].

2. Theory

In the model derived by Malzer and Kanngieβer [11] the
spectrometer sensitivity function ηj xð Þ was introduced. In this
model, depth-dependent intensity of X-ray fluorescence radiation
of given element j recorded in confocal geometry, assuming
monochromatic excitation, paraxial X-ray optics, and neglecting
enhancement effects, is given by:

ΦjðxÞ ¼
Z D

0
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where ~η j takes into account the geometry of the confocal volume
and the transmission factors of the excitation/detection X-ray
optics and the detection efficiency, sx;j is the width of the
sensitivity profile, Φ0 is the flux of the impinging beam, τF ;j is
the X-ray peak production cross section, φ and ψ are the incidence
and take off angles measured to the sample normal, μ0;i andμj;i are
the mass absorption coefficients for the primary and secondary
radiation. The function ρjðxÞ describes the local density profile of
the analyzed element. For thin samples, when the absorption
effects can be omitted

ΦjðxÞ ¼ η′jðxÞQj; ð4Þ

where Qj is the mass deposit per unit area of the analyzed element.
In the approach proposed in this work the absorption term in Eq.
(1) is split in two separate terms:
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The first term in the right side of Eq. (5) corrects for the
absorption effects within the confocal volume. The second term
corrects for the attenuation of the primary and secondary radia-
tion on the path from the sample surface to the probing position x.
This term does not depend on ζ and therefore it can be excluded
from the main integral

ΦjðxÞ ¼ exp −
Z x

0
μlin;jðξÞdξ

� �Z D

0
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Gjðζ; xÞ ¼ η′jðζ−xÞexp
Z x

ζ
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Function Gj ζ; xð Þ takes into account the absorption effects
within the probing volume. It can be considered as an expanded
version of the original sensitivity function η′jðxÞ. As shown in Eq. (7)
the absorption of primary and secondary radiations inside the
confocal volume modifies the original sensitivity function η′jðxÞ in a
way that for ζox the sensitivity profile is enhanced by the
exponent term which becomes 41, whereas for ζ4x the expo-
nent term becomes o1 and the sensitivity profile is attenuated.
The distortion of the original sensitivity function depends on the
effective linear absorption coefficient as well as on the size of the
confocal volume. In the case of weakly absorbing matrices and

small probing volumes

exp
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In such a case Eq. (6) can be simplified to

ΦjðxÞ ¼ exp −
Z x
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where operators * and � are convolution and multiplication,
respectively. The derived Eq. (9) opens up a possibility for
determining the local density depth profile of the j-th element
by a direct deconvolution of the observed X-ray fluorescence
signal ΦjðxÞ with known sensitivity function η′jðxÞ followed by the
absorption correction of the deconvolved profile Φj;deconvolvedðxÞ

ΦjðxÞ; η′jðxÞ -
deconvolution

Φj;deconvolvedðxÞ ¼ exp −
Z x

0
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0
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Φj;deconvolvedðxÞ is a dimension of density. The function η′jðxÞ must
be known in advance, it can be determined by fitting Eq. (4) to the
measured depth profile of a thin film standard sample. As shown
in Eq. (11) the local density profile of the analyzed element is
calculated by multiplying the deconvolved intensity profile by the
exponential term determined at each probing position. This term
is responsible for correcting the absorption effects due to the
presence of absorbing layers of the sample between the current
position of the probing volume and the sample surface. To convert
the local density profiles ρjðxÞ into profiles of the concentration we
assume a known density of the matrix and known densities of the
elements (or chemical compounds containing given element)
mixed with the matrix. Assuming that the elements (compounds)
are not diluted but mixed with the matrix one can calculate the
overall sample density at given depth and use it to obtain
concentration depth profiles.

The deconvolution with regularization procedure [17,18] was
used to deconvolve the intensity profiles. In this procedure the
analyzed signal h (the measured characteristic peak intensity
profile) is a convolution of the known point spread function
(PSF) g (the spectrometer sensitivity function) and the real signal
f (the absorption modified element density profile) with super-
imposed noise n (statistical fluctuations of the measured intensity
profile). The relation between these functions can be written in
the following form:

h¼ fng þ n ð12Þ
where ∗ is a convolution operator. Function f is approximated by f̂
which minimizes the following expression:

∑
x

ððf̂ngÞðxÞ−hðxÞÞ2
n2ðxÞ þ λ∑

x

���Δf̂ ðxÞ
Δx

���: ð13Þ

The dimensionless λ parameter controls the strength of the
regularization (smoothing). For given problem the value of this
parameter has to be chosen empirically to get the best compro-
mise between the smoothing and the maximization of goodness of
fit. The first term in this sum governs how accurately the
convolution of the approximated function f̂ and the sensitivity
function g fits to the signal h. The second term avoids solutions
affected with high noise.

In the numerical implementation used in this work the
measured and deconvolved signals were discrete functions of
probing positions. The sample was divided into a stack of layers
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