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a b s t r a c t

For the first time, several multivariate calibration (MVC) models including partial least squares-1 (PLS-1),
continuum power regression (CPR), multiple linear regression-successive projections algorithm (MLR-
SPA), robust continuum regression (RCR), partial robust M-regression (PRM), polynomial-PLS (PLY-PLS),
spline-PLS (SPL-PLS), radial basis function-PLS (RBF-PLS), least squares-support vector machines
(LS-SVM), wavelet transform-artificial neural network (WT-ANN), discrete wavelet transform-ANN
(DWT-ANN), and back propagation-ANN (BP-ANN) have been constructed on the basis of non-bilinear
first order square wave voltammetric (SWV) data for the simultaneous determination of ascorbic acid
(AA), uric acid (UA), dopamine (DP) and nitrite (NT) at a glassy carbon electrode (GCE) to identify which
technique offers the best predictions. The compositions of the calibration mixtures were selected
according to a simplex lattice design (SLD) and validated with an external set of analytes' mixtures. An
asymmetric least squares splines regression (AsLSSR) algorithm was applied for correcting the baselines.
A correlation optimized warping (COW) algorithmwas used to data alignment and lack of bilinearity was
tackled by potential shift correction. The effects of several pre-processing techniques such as genetic
algorithm (GA), orthogonal signal correction (OSC), mean centering (MC), robust median centering
(RMC), wavelet denoising (WD), and Savitsky–Golay smoothing (SGS) on the predictive ability of
the mentioned MVC models were examined. The best preprocessing technique was found for each
model. According to the results obtained, the RBF-PLS was recommended to simultaneously assay the
concentrations of AA, UA, DP and NT in human serum samples.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Dopamine (DP), ascorbic acid (AA), uric acid (UA) and nitrite
(NT) usually coexist in biological matrixes, and they were con-
sidered as crucial molecules for physiological processes in human
metabolism. For instance, DP is one of the important natural
catecholamine neurotransmitters for message transmission in
the central nervous system, which plays a critical role in the
function of central nervous, hormonal, and cardiovascular systems.
Abnormal levels of DP will lead to Huntington's disease and
neurodegenerative disorders, such as Alzheimer's and Parkinson's
[1–3]. AA is another important component in human diet, and it
plays a vital role in neurochemistry, bioelectrochemistry and
clinical diagnostics applications [4]. More importantly, it has been
used for prevention and treatment of scurvy, mental illness and
cancer [5]. UA is a primary end product of purine metabolism.
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Abnormal concentration levels of UA will lead to some diseases,
such as gout and hyperuricaemia [6]. In recent years, many papers
reported that NO could act as a neurotransmitter or a neuromo-
dulator in the central nervous system. Although the physiological
results of NO for DP release in the striatum are controversial, it is
undisputed that NO can be oxidized to NT in biological circum-
stance as fast as in a few seconds [7–9]. Therefore, simultaneous
determination of AA, DP, UA and NT is important for investigating
their physiological functions and diagnosing diseases.

Whereas zeroth-order univariate calibration cannot detect sample
components producing an interfering signal, first-order MVC, which
operates using a vector of data per sample, may compensate for these
potential interferents, provided they are included in the calibration set,
a property known as the “first-order advantage”. The MVC methods
are increasingly used to extract relevant information from different
types of absorptive spectral and electrochemical data to predict
analyte concentrations or properties of complex samples [10–12].
Several tools have been reported in the literature for processing these
data [13], and the most important linear calibration method is PLS
[14]. One problemwhich restricted the application of chemometrics in
electroanalytical chemistry is the non-linearity of electrochemical data
[15]. Several strategies have been used for the calibration of non-linear
data systems. They are: data pretreatment (such as data alignment);
the use of linear methods (for slight nonlinearities only); the use of
local modeling; the addition of extra variables; the use of non-linear
calibration techniques [16–18]. Among these strategies, non-linear
calibration techniques are able to build robust calibration models.

In this work, we are going to compare the performance of classical
linear (PLS-1, CPR, and MLR), robust linear (PRM, and RCR), and non-
linear (PLY-PLS, SPL-PLS, RBF-PLS, LS-SVM, WT-ANN, DWT-ANN, and
BP-ANN) MVC models for predicting the concentration of AA, UA, DP
and NT in a synthetic sample with a complex matrix to choose the
best MVC model for determining the concentration of the mentioned
analytes in human serum samples which have a very complex matrix.
Literature survey revealed that no attempt has been made till date to
the simultaneous voltammetric determination of AA, UA, DP and NT
with the aid of Chemometrics.

2. Experimental

2.1. Chemicals and solutions

The AA, UA, and DP were purchased from Sigma-Aldrich
Chemie, Steinheim, Germany. Sodium nitrite was obtained from
Riedel-de Haën (Sigma-Aldrich Chemie, Steinheim, Germany).
Sodium dihydrogen phosphate (NaH2PO4), and disodium hydrogen
phosphate (Na2HPO4) were obtained from Merck. All other mate-
rials were used of the highest quality available and purchased from
regular sources. The human serum samples used in this study
were obtained from a Medical Diagnostic Laboratory in Kerman-
shah, Iran. Phosphate buffered solution (PBS, 0.1 M, pH2) was
prepared using NaH2PO4, and Na2HPO4 and titrated with H3PO4 to
pH2. All working and sample solutions were analyzed in the PBS.
All solutions were prepared with double-distilled water (ddH2O).
Pure nitrogen was passed through all the experimental solutions.

Stock standard solutions (0.01 M) of the analytes were prepared
daily by exact weighing and dissolving their solid powder in a PBS
(0.1 M, pH2). Working solutions were prepared immediately before
their use by taking appropriate aliquots of each stock standard solution
and diluting with PBS to the desired concentrations.

2.2. Apparatus and softwares

Electrochemical experiments were performed using a m-Autolab
TYPE III, Eco Chemie BV, Netherlands, and driven by the NOVA

software (Version 1.8). A conventional three-electrode cell was
used with a saturated Ag/AgCl as reference electrode, a Pt wire
as counter electrode and a GCE as working electrode. The pH
values were measured using a JENWAY-3345 pH-meter equipped
with a combined glass electrode. The recorded experimental data
was smoothed, when necessary, and converted to matrices by
means of several homemade mfiles. Baseline correction was
performed using AsLSSR [19], and signal alignment was per-
formed using correlation optimized warping (COW) [20] employ-
ing MATLAB software (Version 7.14 from MathWorks, Inc.) [21].
PLS-1, PLY-PLS, SPL-PLS, GA, MC, and OSC analyzes were per-
formed using PLS-Toolbox (Version 3.5, Eigenvector Research Inc.,
USA [22]). All ANN modellings were implemented employing
MATLAB. Computations based on CPR, PRM, RCR, rPCA, and
RBF-PLS were performed in MATLAB environment using a series
of m-files written by Walczak et al. [23,24]. Computations
based on SGS, SPA, and MLR were performed in MATLAB environ-
ment using a series of m-files written by Paiva et al. [25].
All calculations were run on a DELL XPS laptop (L502X) with Intel
Core i7-2630QM 2.0 GHz, 8 GB of RAM and Windows 7-64 as its
operating system.

2.3. Model optimization

To truly compare the different MVC models, the efficiency of
the best possible model should be found. Because of the depen-
dence of the calibration model efficiency on its parameters, the
following parameters were varied (optimized):

� PLS-1: number of latent variables (LVs).
� CPR: number of LVs, and power.
� MLR: number of LVs.
� PRM: number of LVs, and percentage of data contamination

(PDC).
� RCR: number of LVs, PDC, and delta parameter (δ).
� PLY-PLS: number of LVs and degree of polynomial (D).
� SPL-PLS: number of LVs, number of knots (K), and D.
� RBF-PLS: number of LVs, and sigma parameter (s).
� LS-SVM: number of LVs, regularization parameter (γ), and

kernel-related parameter (s2, here, RBF kernel function was
selected).

� ANNs: Number of input neurons (IN), number of hidden
neurons (HN), number of output neurons (ON), and transfer
functions of the hidden and output layers.

2.4. Model efficiency estimation

Whether a model can be applied to analysis of human serum
samples or not, model validation is possibly the most important step
in the model building sequence. In order to evaluate the performance
of the previously mentioned MVC models, each model was validated
for the prediction of the validation set, evaluating root mean squared
errors of cross-validation (RMSECV), cross-validated correlation coeffi-
cient (Q2), root mean square errors of prediction (RMSEP), and relative
error of prediction (REP).
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