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In this study we have examined two numerical algorithms, based upon the high-order panels approach,
to verify and demonstrate that a spurious solution is a direct result of a low-order scheme accuracy that
violates the conservation of circulation. The first algorithm is based upon the parabolic Lagrange interpo-
lation and the second one is based on the same parabolic Lagrange interpolation for the vortex sheet
strength where the geometry of the body/foil is evaluated using a periodic cubic spline, mainly because
the denominator in the integrand of the Cauchy algorithm is the main source of the numerical error in the
scheme. Good agreement has been found between the computational and analytical results and a spuri-
ous free solution has been obtained for the high-order schemes, except for a spurious-like solution in the
case of an under resolved problem.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The boundary integral methods are well known as efficient
approaches for solving potential flow problems. The main advanta-
ges of such techniques arise from the fact that the flow-field solu-
tion is reduced from a volume approach to a surface method. This
requires less computational resources such as memory and com-
putational time. As powerful engineering methods, these types of
integral techniques which are based on the Green’s function
solution have become important engineering tools. The common
ground for these methods is the division of the aerodynamic
surface into small panels and the placing of a vortex distribution
on each one of the panels. Among the variety of vortex methods
is the vortex lattice method (VLM) in which a concentrated vortex
is placed in each panel [9]. An improvement to the VLM is the
Smith and Hess approach [6] where the flow field is represented
by a source distribution and a circulation term. The main advan-
tage in the latter approach is the technique of integrating the
source distribution over the panels. However, the most advanced
methods used today are based on the integration technique of a
high-order vortex sheet distribution or source distribution over
curved panels. The end result of all of these methods is the gener-
ation of a full matrix of influence in which the no-flux condition or
the kinematic boundary condition is satisfied at each collocation
point of each panel. Therefore, the vortex sheet representation
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(the dipole representation in the Green'’s function can be replaced
by a vortex sheet distribution) with a no-flux condition is essen-
tially reduced to the well-known Fredholm integral equation of
the first kind [3] [12].

There is arich literature on the discretization of singular integral
operators of the type considered here. Various Galerkin [1,7] and
Nystrom schemes have been developed [5,10]. high-order algebraic
convergence can be achieved via corrected trapezoid rules and gen-
eralized Gaussian quadratures where exponential convergence can
be obtained [13]. Moreover, there is an extensive framework for
understanding the convergence of Nystrom and Galkerin type
approximations of singular integral operators. Among the variety
of quadrature methods an approach to the same integral equations
was employed by [5,11,2]. The basic concept in their approach
(which is a basic standard in quadrature methods) was to eliminate
the singularity in the singular Cauchy integral (which is no more
than the Green’s formulation in the complex plane) in such a way
that the new integrand in the integral becomes a smooth function.
This was done by adding and subtracting the term of the singular-
ity. The resulting equation combined with the periodical boundary
condition has enabled the approach to be highly accurate compared
to the high-order panel method. Unfortunately, to our knowledge
there is no extension of this approach to a three-dimensional case
although Ref. [10] has implemented a similar approach in 3-D.

It has been demonstrated by Ref. [4] that first-order schemes,
such as “piecewise linear panel” methods, are carrying low-order
of truncation errors which generate a spurious result. Also, Ref.
[15] has reported on spurious results using the same equations
and numerical approach while [16] claims that the matrix condi-
tioning of the resulting equation is the main cause of the inaccurate
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results. On the other hand, Ref. 8] has dealt with the same equation
using a high-order panel technique in which the cubic spline
approach was incorporated for the vortex strength distribution;
he also reported substantial difficulties in solving this equation.
Contrary to low-order accuracy panel methods, high-order accurate
schemes, such as the approach of “adding and subtracting of the
singularity” (see [4,5,11,2]), do not exhibit abnormalities, such as
those found using “piecewise linear panel” methods, and do not
exhibit a spurious solution. The fact that a spurious solution can
be obtained when employing a low-order scheme, such as “piece-
wise linear panel” methods, has motivated this study, since it is
highly related to the appearance of spurious results in the case of
moving boundaries [4]. The goal is to identify the source and mech-
anism of the abnormality, and if possible to find ways to avoid and
correct this behavior. Therefore, in this work we will check the sen-
sitivity of the high-order accurate schemes that are based upon
high-order panel methods in order to verify and to demonstrate
that the spurious solution is the outcome from a low-order accurate
schemes. For this purpose, we have employed two methods that are
based on the higher order panels. In the first approach the vortex
sheet was represented by a second-order polynomial interpolation
(forward Lagrangian interpolation) to represent the vortex sheet
strength and the foil/body geometry. Since the denominator in
the Cauchy integrand is the main source of numerical error, this
approach was modified to represent the foil geometry with a peri-
odical cubic spline. It was found that, in general, the higher order
panels do not exhibit a spurious solution. However, for under-
resolved problems, it seems that the higher order panel method
based on the Lagrangian interpolation exhibits a spurious behavior.
This can be corrected by applying the same procedure that was sug-
gested by Ref. [4]. It is clear from this research that 2-D low-order
schemes generate a spurious solution and therefore only high-order
schemes can be taken under consideration which is a computation-
ally heavy burden in terms of computer operations and program-
ming effort. These points have to be further investigated in 3-D to
verify that the same conclusions are also true in the 3-D cases,
and to see which order of numerical accuracy the panel method
should be to avoid spurious solutions. This point has high relevance
in those cases where the accuracy of high-order schemes deterio-
rate, such as in the cases of under-resolved problems or inadequate
mesh resolution where in such events high-order schemes can be
turned into low-order schemes. It would be rather interesting to
see whether or not a similar conservative approach in the fashion
of Ref. [4] can be implemented in the case of three dimensions in
order to prevent spurious solutions.

2. The governing equations - the Fredholm integrals

In this section we will briefly introduce the governing equations
of the flow field. For more clarification see Ref. [4].

On a simply connected domain that does not contain the point
z, any analytical function 4¥ can be written in the form of the
Cauchy integral as,
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where W = ¢ + iy is the complex potential function and the vari-
ables ¢ and y are the velocity potential and stream function respec-
tively. The term dW/d¢ = u(¢) —iv(¢) is the conjugate velocity in
the complex form, where the velocity components (u, ) are along
the (x,y) direction respectively (see also Fig. 1). The integration var-
iable ¢ is along the boundaries, where z = x + iy is the coordinates of
a given point z at (x,y) in the complex plane, while. Q denotes path
of the integration along the boundary of a simply connected
domain. The above equation can be written in the following form:
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Fig. 1. Schematic description of the body/foil.
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The term x(|z|) is the Heaviside step function in which x(|z]) =1
everywhere and x(|z|) = 0 when z lies on the body surface, while
U, is the background velocity and « is the angle of attack. The first
term in Eq. (1) is the integration result along any arbitrary point in
the fluid domain, while the second term represents the contour
integration along the far field (i.e., as |z| — oo). The last term is
the Cauchy integral along the foil/body. The complex conjugate
velocity can be expressed as: % =u —iv = (U; —iV,)e ", where
u,v,Us and V, are defined in Fig. 1, therefore, Eq. (1) along the
body/foil surface can be further reduced,
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Uy — iV, = 20U, 4+ & }{ Us = Vi g 2)
i fe (—2z

Note that ¢ = ¢(s) in Eq. (1) while z is the collocation point along the
foil/body interface. The variable 0, is the surface slope at the collo-
cation points, where s is the arc length along the body/foil surface,
defined in Fig. 1, while S represents closed integration along the
body surface and S* denotes the Cauchy principal value over the
closed surface. In a fashion similar to Ref. [4], the inner solution
of the flow-field inside the body can be written as,
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In the present work we will continue the discussion of the high-
order panel methods in the case of Q = §,V,ds =0, where Q is
the mass flux across the foil interface. However, some concern has
been addressed in the case where Q = §,V, ds # 0, (see Ref.[4] for
more clarification).

Upon imposing a continuous V,, =V, across the body interface
the following Fredholm equation is obtained,

—2U,.sin(0 — o) + me{i: i : fzds} —V, 4)
and
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The new auxiliary variable y = U; — U is the strength of the
vortex sheet distribution along the rigid body surface. However,
when zero mass flux (V,, = 0) is under consideration, the strength
of the vortex sheet distributions reduces to y = Us, where the inner
velocities U, ,V, are zero. In such a case, Eq. (4) is defined as
Fredholm integral of the first kind, and Eq. (5) is reduced to the
Fredholm integral of the second kind. For the case of zero flux
across the solid boundary Egs. (4) and (5) are identical to (2). In
the case of a moving boundary or jet injection the normal velocity
is not zero (V, # 0). Consequently, the flow-field is represented by
a vortex distribution of strength y(s) that does not necessarily
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