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a b s t r a c t

The present work reports on the simulation of two- and three-dimensional constant- and stratified-
density flows involving fixed or moving objects using an immersed-boundary method. The numerical
approach is based on a simple immersed-boundary method in which no explicit Lagrangian marking
of the immersed boundary is used. The solid object is defined by a continuous solid volume fraction
which is updated thanks to the resolution of the Newton’s equations of motion for the immersed object.
As shown on several test cases, this algorithm allows the flow field near the solid boundary to be correctly
captured even though the numerical thickness of the transition region separating the fluid from the
object is within three computational cells approximately. The full set of governing equations is then used
to investigate some fundamental aspects of solid–fluid interaction, including fixed and moving objects in
constant and stratified-density flows. In particular, the method is shown to accurately reproduce the
steady-streaming patterns observed in the near-region of an oscillating sphere, as well as the so-called
Saint Adrew’s cross in the far-field when the sphere oscillates in a rotating stratified fluid. The sedimen-
tation of a particle in a stratified ambient is investigated for particle Reynolds numbers up to Oð103Þ and
the effect of stratification and density ratio is addressed. While the present paper only consider
fluid–solid interaction for a single object, the present approach can be straightforwardly extended to
the case of multiple objects of arbitrary shape moving in a stratified-density flow.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Solid–fluid interactions are encountered in a large number of
industrial and natural applications, including chemical engineer-
ing, aeronautics, transportations, biomecanics, geophysics and
oceanography, to name but a few. Modeling solid–fluid interaction
is often difficult because of the complexity of the solid shape and
motion in the fluid flow. Reproducing the dynamics of multiple
interacting objects of arbitrary geometry with possible deforma-
tion is made even more challenging if the flow is non-uniform in
composition (multiphase flows), density (compressible or stratified
flows) or temperature (heat transfer, phase change).

Methods for modeling solid–fluid interaction may be divided
within two main groups, depending on the way the solid–fluid
interfaces are described. One group, usually referred to as
‘‘body-fitted grid methods’’ makes use of a structured curvilinear

or unstructured grid to conform the grid to the boundary of the
fluid domain (see e.g. [59,41] for grid generation techniques). In
situations involving complex moving boundaries, one needs to
establish a new body-conformal grid at each time-step which leads
to a substantial computational cost and subsequent slowdown of
the solution procedure. In addition, issues associated with regrid-
ding arise such as grid-quality and grid-interpolation errors.

The second group of methods is referred to as ‘‘fixed-grid meth-
ods’’. These techniques make use of a fixed grid, which eliminates
the need of regridding, while the presence of the solid objects is
taken into account via adequately formulated source terms added
to fluid flow equations. Fixed-grid methods have emerged in recent
years as a viable alternative to body-conformal grid methods. In this
group, one can mention distributed Lagrange multiplier with a ficti-
tious-domain (DLM) based methods [23,51,50,65,2], immersed-
boundary method (IBM) [54,20,37,63], lattice Boltzmann method
(LBM) [38], penalty method [36,56] and ghost-fluid method [21]
have been developed and shown to be effective in computing
fluid-particle systems and fluid-structure interaction problems.

The immersed-boundary method was first introduced by Peskin
[53] for computing blood flow in the cardiovascular system. In the
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original method the flow field is described on a fixed Eulerian grid
and the immersed boundary is represented with a set of Lagrang-
ian points on which the no-slip boundary condition is enforced by
adding appropriate boundary forces. The boundary forces which
are singular Dirac functions along the surface in the continuous
equations are described by discrete regularization functions that
smear the forcing effect over the neighboring Eulerian cells (see
e.g. Fig. 2 of [44]). The immersed-boundary method has been
improved since the pioneering work of Peskin and many variants
can be found in the literature ([43,1], see also the reviews of
[34,44]).

While immersed-boundary method has been used in a wide
range of applications (compressible flows, particulate flows,
micro-scale flows, multi-phase flows, conjugate heat transfer, see
e.g. Kang et al. [35] and reference therein), application to stratified
flows has been rare. To our knowledge, the only recently reported
work using a fixed-grid approach computing the motion of rigid
objects in a stratified fluid is that of Doostmohammadi and Ardek-
ani [19] who used a DLM approach to investigate the interaction of
a pair of particles sedimenting in a stratified fluid, using the Bous-
sinesq approximation. Here we present an immersed-boundary
method aimed at describing the motion of multiple objects of arbi-
trary shape in a constant- or stratified-density flow. The specificity
of the present method is that (i) the treatment of the solid–fluid
interaction is simple and easy to implement in the sense that there
is no Lagrangian marking of the immersed boundary nor interpola-
tion needed and (ii) the fluid density can be inhomogeneous, with
no restriction on the density gradient, i.e. the method is applicable
to non-Boussinesq flows. Details of the numerical scheme are
outlined in Section 2 and the method is applied to investigate
solid–fluid interaction in constant and stratified-density flows in
Section 3, in which both forced motion and freely moving rigid
objects are simulated.

2. Governing equations and numerical method

2.1. Governing equations and assumptions for the fluid phase

Assuming a variable-density non-diffusive Newtonian fluid, the
evolution of the flow is then described using the Navier–Stokes
equations, namely

@V
@t
þr � ðV � VÞ ¼ g� 1

q
rP þ 1

q
r � ½lðrV þrVTÞ� þ f; ð1Þ

r � V ¼ 0: ð2Þ

In (1) and (2), V; P;q and l denote the local velocity, pressure,
density and viscosity of the fluid, respectively, g denotes gravity
and f is a volume force term used to take into account solid–fluid
interaction. The local density of the non-diffusive fluid obeys

@q
@t
þ ðV � rÞq ¼ 0: ð3Þ

The detailed development of 1, 2 in the more general case of
diffusive fluids can be found in Cook and Dimotakis [15]. Here,
we simply set the diffusivity to zero. 1, 2 are written in a general
system of orthogonal curvilinear coordinates. However, in the
present work, only Cartesian or polar systems of coordinates were
used. The reader is referred to Magnaudet et al. [42] for more
details about the resolution of (1) and (2) in the more general sys-
tem of orthogonal curvilinear coordinates.

Eqs. (1)–(3) are enforced throughout the entire domain, includ-
ing the actual fluid domain and the space occupied by the
immersed boundary. In the following, the term f will be formu-
lated such as to represent the action of the immersed solid bound-
aries upon the fluid.

Here, we consider a fluid of variable density for which non-
Boussinesq effects may play a role. In the general case of diffusive
non-Boussinesq fluids there are some fundamental issues with the
proper governing equations to be used. As discussed in Joseph and
Renardy [29] and Chen and Meiburg [13] among others, divergence
effects and Korteweg stresses can potentially be important in
regions of large concentration gradients and need to be taken into
account in physical models. These effects do not need to be
included if one assumes the fluid to be non-diffusive, as in the
present work. Conversely, using a non-diffusive fluid may results
in sharp local density gradients which may cause computational
difficulties, especially in the case of solid objects moving in a strat-
ified fluid [60]. Here, such issues are circumvented by the use of a
numerical scheme specifically designed to handle sharp gradients
for the equation of transport of density, as described in Section 2.3.

2.2. Equations of motion for the solid phase

Let us consider a non-deformable solid object of density qp and
volume #p, the centroid of which being located at xp, moving at lin-
ear and angular velocity up and xp, respectively. Here the index ‘‘p’’
refers to particle label. The local velocity in the object is then
defined by U ¼ up þxp � r; r being the local position relative to
the solid centroid. As will be detailed in the next section, the vol-
ume force f is chosen to ensure V ¼ U in #p (rigid-body motion
throughout the volume of the solid object). Thus, integrating
momentum and kinematic momentum laws for the fluid on #p

gives [63]

d
dt

Z
#p

qVd# ¼ �q#p
dup

dt
¼
Z

Sp

s � ndSþ
Z
#p

qfd#þ �q#pg; ð4Þ

d
dt

Z
#p

qr� Vd# ¼ �q Ip
dxp

dt
¼
Z

Sp

r� ðs � nÞdSþ
Z
#p

qr� fd#; ð5Þ

with s ¼ �PIþ lðrV þrVTÞ being the hydrodynamic stress tensor,
Ip the inertia matrix, n the outward-pointing normal vector on the
solid–fluid boundary Sp and �q the averaged fluid density in the vol-
ume occupied by the particle, viz

�q ¼ 1
#p

Z
#p

qd#: ð6Þ

Note that in the case of a constant-density fluid �q ¼ q. The
motion of the solid object can be either externally imposed or dri-
ven by its weight and the fluid forces on its boundary. In the latter
case, it is described by Newton’s equations for linear and angular
momentum of a rigid body, namely

qp#p
dup

dt
¼
Z

Sp

s � ndSþ qp#pg; ð7Þ

Ip
dxp

dt
¼
Z

Sp

r� ðs � nÞdS: ð8Þ

In order to ensure that the fictitious body force f is such that (7)
and (8) are equivalent to (4) and (5), respectively, we obtain the
following equations of motion viz

dup

dt
¼ g� 1

ðqp � �qÞ#p

Z
#p

qfd#; ð9Þ

Ip
dxp

dt
¼ �

qp

ðqp � �qÞ

Z
#p

qr� fd#: ð10Þ

2.3. Spatial discretization and time-integration of the full system of
equations

Our computational procedure employs a finite-volume
approach on a staggered grid [31]. The transport equation of the
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