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a b s t r a c t

This paper provides analytical solution for the steady-state Couette flow problem in the transition flow
regime, while capturing the non-linear Knudsen layer near the walls. Slope at the center obtained from
Direct Simulation Monte Carlo (DSMC) data and inherent symmetry in the problem have been utilized for
obtaining the solution. A detailed study of the solutions obtained from the linearized super-Burnett, aug-
mented Burnett and R13 equations is presented. The analytical results are compared against DSMC data;
good agreement between them is shown till Kn = 10. These are among the first set of analytical solutions
in the transition regime. The results indicate that the solution tends to become linear as the Knudsen
number increases. The results have allowed formulation of a slip relationship, which can potentially yield
more accurate slip velocity than Maxwell’s slip model in the transition regime. Our analysis suggests that
the Knudsen number envelope over which the R13 and higher-order continuum equations can be
employed is substantially extendable.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Knudsen number (Kn), defined as the mean free path of the gas
(k) divided by the characteristic length scale, can be used to demar-
cate flow into four regimes. These regimes are: continuum
(Kn < 10�3), slip (10�3 < Kn < 10�1), transition (10�1 < Kn < 10) and
free-molecular (Kn > 10). The conventional Navier–Stokes–Fourier
equations are applicable in the continuum regime; solutions of
these equations for a large number of different cases are available
in standard textbooks. Similarly, owing to only a few molecules in
the free-molecular regime, this last regime can also be described
reasonably well. The challenge lies in describing the flow in the
intermediate (slip and transition) regimes. Whereas the applica-
tion of the slip boundary condition along with the Navier–Stokes
equations has been found to give reasonably accurate results in
the slip regime [1–4], analytical solution for flow in the transition
regime appears much more difficult to obtain. This is because the
Navier–Stokes equations are no longer applicable in this regime
and both inter-molecular and molecule-wall collisions have to be
considered. The aim then is to apply higher-order constitutive
equations (such as Burnett, super-Burnett, Grad’s-moment or R13
equations) and obtain their analytical solution. These equations
besides being non-linear require additional boundary conditions;

obtaining analytical solution of these equations therefore becomes
particularly challenging. The present work discusses analytical
solution of these higher-order constitutive equations in the transi-
tion regime for the plane-Couette flow problem.

The conventional fluid dynamics equations such as
Navier–Stokes, which are first-order equations in terms of Knudsen
number, are applicable for small values of the Knudsen number
(Kn� 1). At high values of Knudsen number, these equations show
deviation close to a surface and fail to capture the non-linear
stress/strain-rate relationship resulting in the Knudsen layer near
the surface. Although fictitious slip boundary condition captures
the flow outside the Knudsen layer fairly well, the match with
DSMC data within the Knudsen layer is rather poor [5]. The next
logical approach is to use higher-order continuum equations. The
Burnett and super-Burnett equations are obtained by a Chap-
man–Enskog expansion of the Boltzmann equation, with Knudsen
number as the parameter [6–8]; these equations are second- and
third-order accurate in terms of Knudsen number, respectively.
The moment equations are obtained by taking moments of the
Boltzmann equation with additional equations obtained from the
distribution function for closure [9–11]. The moment equations
retain all higher-order terms of Knudsen number. These higher-
order equations have shown merit by correctly predicting
one-dimensional shock wave thickness in rarefied hypersonic
flows and other aerospace related problems; see Salomons and
Mareschal [12] for the merit of Burnett equations in shock waves
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and Wuest [13] where comparison of solutions from various equa-
tions has been presented.

However, the integrity of the Burnett and super-Burnett
equations has been questioned by some researchers. For example,
the Burnett equations suggest a linear velocity profile for the
steady-state Couette flow problem (similar to the Navier–Stokes
equations), thus failing to capture the non-linearity in the solution.
Similarly, the nature of the solution obtained by solving the super-
Burnett equations for the Couette flow problem shows that both
velocity and temperature are oscillatory in space; which appears
unphysical at first sight. It was shown by Struchtrup and Torrilhon
[9] that small oscillations at a point results in large oscillations at
other points. Bobylev [14] and Struchtrup and Torrilhon [9]
showed that the instability of these equations is such that small
wavelength fluctuations will blow up in time. Kogan [15] argued
that the Burnett equations do not provide solution to the Boltz-
mann equation in the Knudsen layer. The above mentioned weak-
nesses have resulted in researchers proposing alternative forms of
the Burnett equations (see [7]). While recognizing their weak-
nesses, Garcia-Colin et al. [8] have recently discussed in detail
the usefulness of the Burnett equations. The application of these
equations to the Couette flow problem is further explored in this
paper. Recently, the authors have been able to analytically solve
the Burnett equations for plane Poiseuille flow [16]. Detailed vali-
dation of the proposed solution against experimental and DSMC
data in the literature showed that the obtained solution is accurate
up to Kn � 2.2, which is higher than all known analytical solutions.
Note that this Knudsen number is well within the transition
regime.

Lockerby et al. [5], Struchtrup [17], Struchtrup and Torrilhon
[11] and Taheri et al. [18] solved the higher-order continuum equa-
tions. Lockerby et al. [5] considered the Kramer’s problem (gas flow
generated by a uniformly applied shear stress and bounded by one
parallel surface) and employed additional boundary conditions as
suggested by DSMC data to work out the solution for the problem.
It was found that different equations predict different thickness of
the Knudsen layer – anywhere from 0 to 4.9 times the mean free
path for their conditions. Struchtrup [9], Struchtrup and Torrilhon
[11] and Taheri et al. [18] argued that the Burnett and super-Bur-
nett equations fail to capture the Knudsen layer correctly; they
further showed that the regularized 13-moments equations quali-
tatively capture the Knudsen layer. The present paper extends
these earlier works; further comments and comparison with these
papers is made in the later sections. The objectives of the present
work are: (i) to extend the solution to the transition regime for
the plane Couette flow problem, (ii) to provide quantitative com-
parison between the theoretical and DSMC solutions, (iii) to com-
pare solutions from the various higher-order equations, and (iv)
to provide an expression for slip velocity. We do not employ any
condition at the wall rather evaluate the amount of slip from the
model results themselves.

2. Governing equations

In the current paper, we consider the flow between two parallel
infinitely long and wide plates, separated by distance H as shown
in Fig. 1. The plates move in opposite directions with equal magni-
tude of velocity (¼ U0=2). The flow is assumed to be steady,
isothermal and incompressible.

2.1. Super-Burnett equations

As shown by Lockerby et al. [5] and Strutchtrup [17], the Bur-
nett equations predict a linear velocity profile; whereas DSMC data
suggests that the velocity profile is non-linear at larger values of

Knudsen number. This shows that the solution cannot be obtained
from the Burnett equations; still higher-order equation – the
super-Burnett equations, therefore have to be invoked to obtain
the solution for this problem.

Starting from the equations in Agarwal et al. [7] and invoking
the conditions that d/dx = 0 for all quantities (including that for
pressure), Eq. (1) given below is obtained. In their approach, the
non-linear collision integral in the Boltzmann equation is repre-
sented by the BGK model. These equations satisfy the Boltzmann’s
H-theorem for a wide range of Knudsen numbers [7].
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where U is gas velocity, q is pressure, R is gas constant, T is temper-
ature, l is viscosity, s21 is shear stress at the walls, and h7 = �0.4 is a
constant for gas being assumed as hard sphere [7]. The various
terms in the equation can be normalized with the characteristic
scales:
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where U0 is the velocity difference between the two walls. The
equation upon non-dimensionalizing reduces to:
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where Ma is Mach number. Note that all equations presented
henceforth in the paper are in non-dimensional form unless stated
otherwise. Notice that the non-linear term is of O(Ma2). The non-
linear term can therefore be dropped under the condition that we
are considering low-speed flow ðMa < 1=

ffiffifficp Þ. The simplified equa-
tion reads:
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Shavaliyev [19] first calculated (and Struchtrup [17] later con-
firmed it) the Super Burnett stress and heat flux terms for one-
dimensional and weakly perturbed flows, for gas being assumed
as Maxwellian molecules. The Super Burnett terms can be simpli-
fied to the following form for the planar Couette flow problem:
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Both Eqs. (4) and (5) have been considered in this work; these are
referred to as super-Burnett [7] and super-Burnett [19] equations,
respectively. Zhong et al. [20] suggested adding a higher-order term
to the Burnett equations to stabilize the solution. The higher-order
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Fig. 1. Schematic of the flow situation considered.
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