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a b s t r a c t

This paper presents a novel algorithm to solve the 2-D potential flow past complex geometries with cir-
culation in unbounded domain and in the presence of a given vorticity field. It is based on a Poisson solver
that combines two components: the immersed interface method to enforce the boundary condition on
each inner boundary and the James–Lackner algorithm to compute the outer boundary condition consis-
tent with the unbounded domain solution. The algorithm is here based on second order finite differences
and it requires solely 1-D stencil corrections; this makes the immersed interface part of the present
method easily extendable to higher dimensional problems. The treatment of the outer boundaries
requires an iterative boundary potential method. The algorithm is validated, by means of grid conver-
gence studies, on the flow past multiple bodies. The results confirm the second order accuracy every-
where. The algorithm is also self consistent as ‘‘all is done on the grid’’ (thus without using a vortex
panel boundary element method in addition to the grid). For cusped airfoils, a consistent way to enforce
the Kutta–Joukowsky condition is also presented. The present algorithm constitutes a crucial building
block towards an immersed interface-enabled vortex particle-mesh method for the computation of
unsteady viscous flows, with boundary layers, detached shear layers and wakes. A possible extension
to 3-D problems is also briefly discussed.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The study and the development of solution techniques for
Poisson equations is a recurring research topic as they appear in
many areas of mathematical and computational physics, e.g.
electromagnetism, continuum mechanics and theoretical physics.
This wide range of applications has given rise to many different
solution techniques. We here consider two aspects of the problem
that still remain a challenge today: taking into account irregular
interior boundary geometries and providing outer boundary condi-
tions that are compatible with the solution of the equation in an
unbounded domain.

These two key components can also be found in a more specific
context, in the framework of Computational Fluid Dynamics for the
simulation of the flow past bluff bodies in an unbounded domain
(external flow aerodynamics). Moreover, in incompressible fluid
dynamics, one is always constrained to solve at least one Poisson
equation per time step and obtaining its solution represents the
most expensive computational step. The choice of the present
application, namely potential flow in the presence of a given

vorticity field, follows this observation and is motivated by the fact
that it represents one of the computational steps required for the
simulation of unsteady bluff body flows using a viscous vortex par-
ticle method combined with a vortex panel method [1] (boundary
element method), as explained for example in [2,3].

Whether for Poisson equations, for the Navier–Stokes equations
in fluid dynamics, or for other types of PDE’s, great efforts have
been made in order to incorporate irregular boundary geometries
inside the so-called structured grid methods (finite difference
methods, spectral methods, etc.).

One of the first attempts to achieve this goal in the context of
fluid dynamics was undertaken by Peskin [4]. It is considered to
be the pioneering work for a class of methods known as the im-
mersed boundary methods [5,6]. This class of methods provides a
discrete representation of the singular source term acting at the
irregular boundary which is immersed inside the computational
domain. Hence, considering the flow past moving bodies which
are either rigid or even deforming is greatly simplified as the grid
must not be adapted to fit the boundaries.

Based on a similar approach and following the same goal,
Brinkman-type penalization methods have also emerged [7]. The
latter approach can also be applied in combination with different
kinds of discretization methods, i.e. spectral methods [8], finite
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differences [7] or vortex particle methods [9–11]. However, the
regularization of the singular source term over a few grid cells en-
tails a smearing of the solution near the interface, as has been
shown for example in [12], and can lead to a loss of accuracy
[13]. For high Reynolds number flows, this can be problematic be-
cause the boundary layers may not be captured properly. There-
fore, methods capturing sharp interfaces have been developed,
such as the ghost-cell approach [14], the cut-cell method [15] or
the hybrid Cartesian/immersed boundary method (HCIB [16,17]).

In the same spirit, immersed interface methods have appeared
in the literature [18] as a consistent way to take into account pos-
sible jumps of the unknown at the interface, e.g. by modifying the
finite difference stencil in the vicinity of the interface. The original
stencil correction technique [18] uses multiple-dimensional Taylor
series. This can however lead to stability issues in the resulting lin-
ear system resolution and requires among others a careful choice
of the stencil nodes [21]. Other methods use instead one-dimen-
sional Taylor series (dimension splitting approach, see [19,12,20]).
The method developed here is based on the latter approach from
[12], as the stencil correction procedure is more easily applicable
to higher dimensional problems: for each grid direction, the stencil
corrections are derived at the intersections of the interface with
the different grid axes along the corresponding direction, according
to the prescribed boundary condition. The present approach thus
provides a special treatment for grid nodes close to the interface.
This feature is shared by all sharp-interface capturing methods.
The cut-cell method modifies the grid cell geometry near the inter-
face, the ghost-cell approach extends the solution across the
boundary and the HCIB method interpolates the solution on the
interior grid nodes closest to the interface using the solution and
the boundary condition.

The other key component considered here is the unbounded
outer boundary condition. The most natural way to take this into
account for a Poisson equation is to perform the convolution of
the source term with the free space Green’s function, either
through direct summation and ideally by fast summation (fast
multipole method in two [22] and three dimensions [23]). Another
class of methods is based on fast Fourier transforms [24,25] but, as
the immersed interface approach requires local modifications of
the spatial differential operator, it is hardly applicable here.

Therefore, we follow a different approach based on the James–
Lackner algorithm [26,27], which has been further improved in
[28] and which additionally remains compatible with mesh
refinement techniques. The solution procedure is based on two
problems, the first one being obtained by imposing homogeneous
Dirichlet conditions on the outer boundary and the second prob-
lem computes correction charges at the outer boundary which
result in an inhomogeneous Dirichlet condition being consistent
with the unbounded character of the solution. Miller [29] extended
the method to include some irregular interior boundaries held at a
fixed potential. The presence of interior boundaries with unknown
surface charges results in a method which is intrinsically iterative.

The present approach combines the work of Linnick and Fasel
[12] and Miller [29] and generalizes the algorithm to allow the
computation of potential flow past multiple bodies accounting
for a given compact vorticity field. In this case, the stream function
is the superposition of a function linear in space (free stream flow
field) and an unbounded solution of the Poisson equation. The
stream function solution is constant in the interior boundaries
but the value of this constant is not known a priori. This value is
determined by a supplementary constraint about the circulation
of the flow around each solid body.

In this paper, we thus propose a second-order finite difference
method to compute the solution of a two-dimensional Poisson
equation in an unbounded domain with interior boundaries of
complex geometry.

The underlying objective of the present work is to integrate the
resulting method [30,31]. Vortex particle methods perform very
well for unbounded vortical flows but accounting for solid bodies
remains difficult. Penalization methods have been used (as men-
tioned above [9–11]). A different technique consists in combining
the Poisson solver with a boundary element method to account
for the presence of the walls, either by combining it with a vortex
panel method [2,3,32,33], either by computing equivalent sources
of velocity potential [34,35]. This procedure allows to recover from
a given vorticity field a velocity field that also respects the no
through-flow condition at the surface of the body. In the specific
context of vortex particle-mesh (VPM) methods, relying simulta-
neously on particles and on a grid [36,37,33], the present approach
is a more consistent alternative to the combination of the finite
difference Poisson solver with the boundary element method, as
it preserves the order of convergence up to the wall.

In Section 2, the governing equations for the elliptic problem
are given. Section 3 is devoted to the methodology description:
in Section 3.1, the immersed interface approach is detailed in order
to take into account the interior boundaries with prescribed outer
boundary conditions; in Section 3.2, the iterative boundary poten-
tial method is detailed so as to obtain the correct outer boundary
conditions; in Section 3.3, the global algorithm is given, and Sec-
tion 3.4 briefly presents a possible extension of the approach to
three-dimensional problems. Section 4 is devoted to the validation
of the methodology for several potential flow problems.

Results are first compared with the analytical solution for the
flow past a cylinder. The convergence behavior of the approach is
assessed and the error value is compared with that obtained using
a vortex panel method. A convergence study is also performed for
the prediction of the added mass coefficient of an elliptical
cylinder. Next, the order of convergence is assessed for the flow
past an airfoil with a cusped trailing edge. This case requires
the development of a supplementary equation to enforce the
Kutta–Joukowsky condition. Finally, the ability of the method to take
into account multiple bodies as well as more general geometries is
also illustrated and validated.

2. Problem statement

In many applications of computational fluid dynamics, the solu-
tion of a Poisson equation is required. In particular, the operation
of computing a velocity field u associated to a given vorticity field
x ¼ r� u is required when working with the velocity–vorticity
formulation of the Navier–Stokes equations for incompressible
flows (r � u ¼ 0)

Dx
Dt
¼D @x

@t
þ u � rx ¼ ðruÞ �xþ mr2x r2W ¼ �x;

with m the kinematic viscosity of the fluid. Indeed, the velocity field
u can be linked to the vorticity x through the above Poisson equa-
tion for the streamfunction W, as u ¼ r�W and r �W ¼ 0 (Lorenz’
gauge).

The flow past a nonmoving body with boundary @Xb is sketched
in Fig. 1, in the 2-D case where W ¼ Wẑ and x ¼ xẑ. The flow domain
is then Xf ¼

D
R2=Xb and the boundary conditions are limjxj!1u ¼ U1

(with U1 a constant free stream flow) and u ¼ 0 on @Xb (no slip
condition). The translation of the no slip condition into vorticity
formulation is not straightforward. Usually, the Poisson equation
is solved with a no through-flow condition on @Xb. This is actually
the core of the present work and we refer to the problem as finding
the potential flow that cancels the through flow induced by the
vorticity field. The potential velocity field however still presents a
residual tangential slip velocity at the wall and the way to enforce
a no slip condition based on this is further detailed in [2,3].
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