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a b s t r a c t

Despite the critical importance of resolving flow at or near domain boundaries, boundary condition
formulations are often implemented in an ad hoc fashion. The purpose of this work is to provide a general
framework for the implementation and, importantly, the verification of boundary conditions for
node- and cell-centered finite volume schemes. These conditions may include any combination of
Dirichlet conditions, Neumann conditions, extrapolation, and the conservation equations themselves.
Specific conditions for inviscid walls, inflow, and outflow are systematically tested using manufactured
and exact solutions to assess well-posedness and stability. The procedures in this work provide a method
for the verification of complex boundary conditions as well as shed physical insight for different problem
configurations.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Computational Fluid Dynamics (CFD) is increasingly being
applied to applications involving greater complexity than ever
before. Common to most of these applications is the requirement
for high levels of accuracy at or near domain boundaries. Examples
include calculation of aerodynamic lift and drag, computation of
boundary layer characteristics, estimation of surface heating, and
mass flux computation. For these and other cases, the regions near
boundaries are the primary focus of the CFD simulation and
require the greatest resolution and numerical accuracy.

Because of the need for high accuracy near boundaries, many
researchers over the years have focused on proper implementation
and analysis of boundary conditions. Such analysis, especially in
the context of finite difference schemes, has a long history (see,
for example, the works of Gustafsson [1] and Kreiss and Sherer
[2]). The subsequent emergence of finite volume schemes raised
new questions regarding the stability and well-posedness of
boundary procedures. Numerous boundary treatments have been
proposed for finite volume schemes in an attempt to maintain
accuracy and stability. For example, many treatments have been
proposed for inviscid walls. The method by Rizzi [3] involves the

use of the momentum equation to obtain the pressure. Jameson
proposed direct modification of the flux at an inviscid wall to pro-
duce zero convective flux contribution [4]. Dadone and Grossman
advocate a curvature corrected symmetry condition for an inviscid
wall [5]. Balakrishnan and Fernandez recommend a variety of other
methods involving additional quantities such as entropy and
enthalpy [6]. Numerous other strategies exist for inviscid walls
as well as for other boundary conditions, such as inflow, outflow,
and no-slip walls. The difficulty is that many of these methods
have not been rigorously verified and may or may not be consistent
with the interior discretization schemes. Addressing this issue,
Choudhary et al. [7] recently proposed a boundary verification pro-
cedure using the method of manufactured solutions (MMS). Their
approach requires carefully constructed manufactured solutions
that already satisfy the boundary conditions, which means that a
new manufactured solution needs to be constructed for each
boundary condition and geometry. Nonetheless, their work repre-
sents an important step towards comprehensive code verification
since most previous verification strategies have neglected bound-
ary effects [8–12].

This work provides an alternate method of boundary verification
by focusing on three main goals. First, we provide a general frame-
work for implementing boundary conditions for both node- and
cell-centered schemes. The framework applies to arbitrary bound-
ary conditions for any physical system. Second, we provide a rigor-
ous and general approach for the verification of these boundary
conditions based on MMS wherein arbitrary manufactured
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solutions are used in concert with the appropriate formulation of
the boundary condition equations. This approach allows for direct
measure of the combined discretization error of the interior and
boundary treatments. This is essential for finite volume schemes,
for which traditional finite difference-type truncation error analysis
does not accurately represent the true order of discretization error
[13]. Third, we demonstrate the importance of choosing physically
correct boundary conditions for specific physical configurations.
We find that often the choice of well-posed and stable boundary
conditions is not unique. However, certain boundary conditions
can lead to erroneous results, often in subtle ways.

In order to accomplish these goals, we explore the formulation
of a variety of boundary types, including inviscid walls, inflow, and
outflow, for both node- and cell-centered finite volume schemes.
For each of these boundary types, we explore a variety of condi-
tions that use a combination of Dirichlet, Neumann, and extrapola-
tion conditions. Importantly, we highlight the fact that node-
centered schemes easily allow the direct use of the governing
equations of motion (mass, momentum, and energy) at the bound-
aries, while cell-centered schemes do not, instead relying on
extrapolation or other conditions. Other boundary condition types
and implementations beyond those discussed in this work are cer-
tainly possible. Here, the principal objective is to provide a frame-
work for the implementation and verification of any boundary
condition.

The paper is organized as follows: First, boundary condition for-
mulations are explored for node- and cell-centered finite volume
schemes. We present a common discretization framework to test
a variety of governing boundary equations. We demonstrate how
to verify these boundary conditions using MMS. We then present
grid refinement and other qualitative studies. First, a quasi-1D noz-
zle is tested with both MMS and exact solutions. Next, we extend
the use of MMS to two dimensions with wall boundary conditions.
Finally we present error convergence results for Ringleb flow and a
NACA 0012 subsonic airfoil. We then offer some conclusions
derived from these studies.

2. Boundary condition implementation

In this work we test a variety of boundary condition implemen-
tations and assess the resulting impact on accuracy through
rigorous verification studies. In the interior of the domain, we solve
the steady Euler equations,

@Q
@s
þ $ � F ¼ 0; ð1Þ

where Q ¼ ðq;qu;qv;qeÞT is the vector of conserved variables, and
F is the inviscid flux vector. Here, q is density, u and v are the
Cartesian velocity components, and e is the total energy per unit
mass. While we focus on inviscid flows in this work, the methods
described herein apply equally well to viscous flows. We are
interested in solving the steady equations to which we add the
pseudo-time (s) derivative for convenience in marching to steady
state. We test both node- and cell-centered finite volume spatial
discretizations, which result in a semi-discrete set of non-linear
equations of the form

@Q
@s
þ RðQÞ ¼ 0; ð2Þ

where RðQÞ is the steady residual at either an interior node or an
interior cell location depending on the discretization procedure.
Both cell- and node-centered methods use linear least squares
gradient procedures to reconstruct left and right states with CUSP
artificial dissipation [14,15]. Limiters are not employed in this work
because all test cases make use of smooth solutions in order to

verify order of accuracy. Explicit Runge–Kutta time stepping is used
to reach steady state for both node- and cell-centered codes.

In addition to the interior discretization scheme, we must incor-
porate boundary conditions to close the system of equations on a
finite domain. Here we focus on inviscid wall, inflow, and outflow
conditions in order to explore fundamental issues of stability, well-
posedness, and numerical accuracy. The methodology developed
here is quite general and directly applies to other boundary condi-
tion types as well. For node-centered discretizations, boundary
conditions are enforced directly at the boundary nodes coincident
with the physical boundary, shown in Fig. 1a. For cell-centered dis-
cretizations, we introduce additional unknowns in the form of
ghost nodes located at the flux quadrature points of the boundary
faces, shown in Fig. 1b. The ghost nodes are then used in an upwind
flux formula to determine the numerical flux through the bound-
ary face. In this manner, the cell-centered boundary formulation
remains water-tight. The node-centered configuration, however,
is not strictly water-tight since the fluxes surrounding the bound-
ary nodes do not always cancel with nearby interior nodes.

For both node- and cell-centered formulations, we define a
‘‘boundary residual’’, RbðQÞ, which we drive to zero at steady state
along with the interior residuals, RðQÞ:

RbðQÞ ¼ 0: ð3Þ

In a node-centered discretization, Rb replaces R at the boundary
nodes. In cell-centered discretizations, Rb provides the governing
equations for the ghost nodes. Boundary nodes and ghost nodes
may then be used in any aspect of the discretization scheme, includ-
ing flux computations and gradient reconstruction. In all, we test
fifteen different boundary implementations, which are listed with
a common notational convention in Table 1 for clarity. The methods
involve a certain number of Dirichlet-specified quantities, with the
state specification completed by additional methods, such as Neu-
mann conditions, extrapolation, or in some cases, the equations of
motion themselves. We will refer to this table as we develop vari-
ous forms for Rb in the following sections.

2.1. Node-centered boundaries

All boundary conditions involve the specification of a certain
number of Dirichlet (or Neumann) conditions augmented by
additional information derived from the interior field. With node-
centered schemes it is straightforward to select some combination
of the governing equations of motion (mass, momentum, and
energy) to enforce at boundary nodes. This is because the boundary
nodes lie within control volumes for which we can easily implement
flux balances. In contrast, cell-centered boundary conditions require
the use of ghost nodes for which there is no natural control volume
or flux balance. Thus, it becomes difficult to apply the equations of
motion directly at the ghost nodes. Instead, we choose other meth-
ods to define the ghost node state such as solution extrapolation.

Enforcement of boundary conditions in a node-centered scheme
involves the specification of the boundary residual, Rb, directly at
the boundary nodes shown in Fig. 1a. In this section, we outline
a procedure to obtain the boundary residual by multiplying
the governing equations of mass, momentum, and energy by a
selection matrix to complete the boundary conditions. A subset
of this approach uses Lagrange multipliers as discussed by
Allmaras [16]. In addition, we discuss a second method involving
a commonly used weak boundary condition for an inviscid wall.

2.1.1. Selection matrix method
One method of obtaining a boundary residual is through a selec-

tion matrix that picks desired combinations of the equations of
motion. The finite element community has used such an approach
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