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a b s t r a c t

The buoyancy driven flow characteristics through horizontal passage between two enclosures are numer-
ically investigated. The two-dimensional physical model consists of upper and lower enclosures filled
with cold and hot fluids connected through ceiling vent. Non-Boussinesq variable density approach is
used to model the density variations by primitive variable method. The governing equations are solved
by Simplified Marker and Cell (SMAC) algorithm on non-staggered grid using high accuracy compact
finite difference schemes. The Grashof number is varied from Gr ¼ 106 to 5� 107. The nonlinear
exchange of lighter and heavier fluids through vent are investigated by varying vent aspect ratio. The
net mass flow rate through horizontal passage are oscillatory and bidirectional. The critical Grashof num-
ber is identified, and beyond this instabilities intensifies leading to complex flow behavior inside enclo-
sures. The vent widths D = 0.05H and 0.2H reduces flow perturbations and enhances stable flow behavior
across the vent. Chaotic flow originates for critical vent widths 0.1H 6 D 6 0.15H, and nonlinear oscilla-
tions evolves till the system reaches quasi-steady state. Reduced vent thickness results in higher oscilla-
tion frequencies and better mixing rates between enclosures. The present mathematical model and
numerical method showed good agreement with the existing results available in literature.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The buoyancy induced flow through enclosure openings has
wide applications in natural ventilation, fire dynamics, solar collec-
tors and cooling of electronic applications. Most of the classical
problems [1–3] on natural convection flow phenomena were mod-
eled with Boussinesq approximation. The approximation is valid
when product of thermal expansion coefficient and temperature
difference is insignificant ðbDT � 1Þ. However, for applications
with larger temperature gradients, it is inappropriate to evaluate
density variations by Boussinesq approximation. The heat transfer
by natural convection in cavities [4–7] with differentially heated
side walls are widely investigated in literature. Numerical simula-
tions were performed in square cavity [4] for wide range of Ray-
leigh numbers Ra ¼ 103—1016. The above well known benchmark
numerical solutions provide insight into the free convection trans-
port phenomena. Numerical study was performed in thermally dri-
ven square cavity [8] in non-Boussinesq regime by solving
compressible Navier–Stokes equation. The convective term was
evaluated by explicit third order discretization scheme and
stiffness was treated by preconditioning technique. A similar

numerical study was carried out by compressible approach using
finite volume method [9] to incorporate larger density variations.

The Gay-Lussac (Ga) number quantifies density variations of the
working fluid [10,11] in variable density formulations. The Bous-
sinesq approximation is valid when Gay-Lussac’s number is negli-
gible, close to zero. The effects of Ga on the flow characteristics was
investigated [11] for fixed Rayleigh and Prandtl numbers. They
identified that velocity fields were significantly affected by increas-
ing Gay-Lussac’s number. Recent numerical study on high thermo-
buoyant flows [12] in square cavity with bottom heat source has
compared the heat transfer characteristics between incompress-
ible Boussinesq and compressible flows. Similar numerical investi-
gations were carried out to predict the conjugate natural
convection flows in vertical annulus [13] and capability of Bous-
sinesq and non-Boussinesq models were discussed.

All the above mentioned studies are related to natural convec-
tion in cavities which are heated from the left and bottom bound-
aries. However numerical studies on buoyancy induced mixing
through horizontal vent between two compartments filled with
heavier and lighter fluids are limited. Similar computational studies
in past [14–16] are within the frame work of Boussinesq approxi-
mation. The flow characteristics through vents are oscillatory and
bidirectional. The transport phenomena between enclosures were
classified based on four modes [15] namely diagonal exchange
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counter modes, counter flow exchange mode, standing wave mode
and trapped-vortex mode. The effects of vent aspect ratio [16] on
bidirectional flows through horizontal vents were investigated to
determine the frequency of oscillatory flow pattern. The buoyancy
driven unsteady mixing between hot and cold fluids leads to the
formation of thermal plumes and is well-known in literature as
Rayleigh Taylor instability problems [17–19].

Analytical and numerical investigations [20–22] were per-
formed to study the entrainment effects due to buoyancy induced
air flow through horizontal vent in enclosures. It was identified that
mass flow rates through the ceiling vents [22] are significantly af-
fected by varying the heat source and vent locations. Higher order
numerical schemes [23–25] were proposed in literature to evaluate
the convective terms in Navier–Stokes equation to yield high accu-
racy solutions. The compact finite difference schemes were devel-
oped to determine unsteady numerical solutions accurately and it
was found to be computationally efficient. The high accuracy com-
pact schemes was applied for mixed convection [26] and natural
convection [22,27] problems where the density variations are mod-
eled by Boussinesq approximation. However implementation of
compact schemes in variable density problems suitable for low
Mach number flows or weakly compressible flows are limited.

In literature, numerical studies on the entrainment effects
through horizontal vent modeled by variable density approach
are limited. This has been the motivation for the present investiga-
tion. In the present article buoyancy induced mixing process be-
tween two square enclosures connected through central
horizontal passage is numerically investigated. The lower and
upper enclosures are filled with hot and cold fluids. A non-Bous-
sinesq variable density approach is implemented to evaluate the
density variations. The results are presented by varying different
Grashof numbers and the critical Grashof number above which
flow instabilities develop across the vent are determined. The ef-
fects of vent aspect ratio on flow characteristics are studied by
varying vent width and thickness.

2. Governing equations and boundary conditions

The lower and upper enclosures are filled with hot (Th) and cold
fluids (Tc) as shown in Fig. 1. Horizontal vent of width D and thick-
ness Hv facilitates the buoyancy induced mixing process. The nat-
ural convection flow is modeled as unsteady, two-dimensional,
compressible flow problem suitable for low Mach number flows.
The thermo-physical properties of fluid are constant, except the
change in density which are evaluated from ideal gas law. The gov-
erning equations for conservation of mass, momentum and energy
are as follows:
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The equation of state relates density with pressure and temper-
ature and are as follows:

p ¼ qRT ð5Þ

where q is the density of the fluid; l is the dynamic viscosity; k is
the thermal conductivity; g is the acceleration due to gravity. The
pressure work and viscous dissipation terms in energy equation
are ignored for low Mach number flows.

The modified continuity equation is as follows:
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The time discretized momentum equations are given as follows:
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The pressure Poisson equation given below is obtained by
substituting Eq. (7 and 8) into L.H.S. of eqn (6).
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where u� and v� are the predicted velocity fields obtained from Eqs.
(9 and 10) and q, u, v are the density and velocity fields at time tn.

The following non-dimensional variables are used to obtain the
dimensionless governing equations:

X ¼ x
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The dimensionless governing equations are as follows:

@.
@s
þ@ð.UÞ

@X
þ@ð.VÞ

@Y
¼0 ð12Þ

@ð.UÞ
@s

þ@ð.UUÞ
@X

þ@ð.UVÞ
@Y

¼�@P
@X

þ @

@X
2

ðGrÞ
1
2

@U
@X
� 2

3ðGrÞ
1
2

@U
@X
þ@V
@Y

� � !
þ @

@Y
1

ðGrÞ
1
2

@U
@Y
þ@V
@X

� � !
ð13Þ

@ðqVÞ
@s

þ@ð.UVÞ
@X

þ@ð.VVÞ
@Y

¼�@P
@Y
þ @

@X
1

ðGrÞ
1
2

@U
@Y
þ@V
@X

� � !

þ @

@Y
2

ðGrÞ
1
2

@V
@Y
� 2

3ðGrÞ
1
2

@U
@X
þ@V
@Y

� � !
�ð.�1Þ

Ga
ð14Þ

@ð.hÞ
@s
þ@ð.UhÞ

@X
þ@ð.vhÞ

@Y
¼ 1

PrðGrÞ
1
2

@2h

@X2þ
@2h

@Y2

" #
ð15Þ

where Gr ¼ gbDTH3

m2 is the Grashof number; Pr ¼ m
a is the Prandtl num-

ber; Ga ¼ bDT is the Gay-Lussac’s number.
The solid walls are treated with adiabatic boundary conditions

and no-slip boundary conditions are specified for velocity fields.
At initial time s ¼ 0, the lower enclosure and lower half of the hor-
izontal passage are filled with hot fluid (h ¼ 1), meanwhile the
horizontal passage upper half and upper enclosure are filled with
cold fluid (h ¼ 0).

at s ¼ 0 : U ¼ V ¼ 0 ð16Þ
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